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olomorphic motion irrespective of the choice of the function p. Moreover, for

a > 1, no such uniform bound is possible. We interpret
the theorem in terms the asymptotic tail variance of such
a Bergman projection Py (by the way, the asymptotic tail
variance induces a seminorm on the Bloch space). This im-
proves upon earlier work of Makarov, which covers the range
0<a< g = 0.1542.... We then apply the theorem to ob-
tain an estimate of the universal integral means spectrum for
conformal mappings with a k-quasiconformal extension, for
0 < k < 1. The estimate reads, fort e Cand 0 < k < 1,
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which should be compared with the conjecture by Prause and
Smirnov to the effect that for real ¢ with |t| < 2/k, we should
have B(k,t) = $kt2.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Basic notation

We write R for the real line, Ry := ]0, +oo] for the positive semi-axis, and C for the
complex plane. Moreover, we write Co, := CU {00} for the extended complex plane (the
Riemann sphere). For a complex variable z = z + iy € C, let

:M, dA(z) = dar:dy7

d :
s(2) 2T T

denote the normalized arc length and area measures as indicated. Moreover, we shall

write

a._l g_ig 5_1 2_,_12
= 2\ox oy)’ = 2\ox  oy)’

for the standard complex derivatives; then A factors as A, = 9,0.. Often we will drop
the subscript for these differential operators when it is obvious from the context with
respect to which variable they apply. We let C denote the complex plane, D the open
unit disk, T := JD the unit circle, and D, the exterior disk:

D:={zeC: |2| <1}, De :={2€Cx: |z >1}.
More generally, we write

D(zp,7) :={2€C: |z — 2| <1}

for the open disk of radius r centered at zj.
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