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Let P denote the Bergman projection on the unit disk D,

Pμ(z) :=
∫
D

μ(w)
(1 − zw̄)2

dA(w), z ∈ D,

where dA is normalized area measure. We prove that if 
|μ(z)| ≤ 1 on D, then the integral

Iμ(a, r) :=
2π∫
0

exp
{
a
r4|Pμ(reiθ)|2

log 1
1−r2

}
dθ
2π

, 0 < r < 1,

has the bound Iμ(a, r) ≤ C(a) := 10(1 −a)−3/2 for 0 < a < 1, 
irrespective of the choice of the function μ. Moreover, for 
a > 1, no such uniform bound is possible. We interpret 
the theorem in terms the asymptotic tail variance of such 
a Bergman projection Pμ (by the way, the asymptotic tail 
variance induces a seminorm on the Bloch space). This im-
proves upon earlier work of Makarov, which covers the range 
0 < a < π2

64 = 0.1542 . . . . We then apply the theorem to ob-
tain an estimate of the universal integral means spectrum for 
conformal mappings with a k-quasiconformal extension, for 
0 < k < 1. The estimate reads, for t ∈ C and 0 < k < 1,
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B(k, t) ≤
{

1
4k

2|t|2(1 + 7k)2, for |t| ≤ 2
k(1+7k)2 ,

k|t| − 1
(1+7k)2 , for |t| ≥ 2

k(1+7k)2 ,

which should be compared with the conjecture by Prause and 
Smirnov to the effect that for real t with |t| ≤ 2/k, we should 
have B(k, t) = 1

4k
2t2.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Basic notation

We write R for the real line, R+ := ]0, +∞[ for the positive semi-axis, and C for the 
complex plane. Moreover, we write C∞ := C ∪{∞} for the extended complex plane (the 
Riemann sphere). For a complex variable z = x + iy ∈ C, let

ds(z) := |dz|
2π , dA(z) := dxdy

π
,

denote the normalized arc length and area measures as indicated. Moreover, we shall 
write

Δz := 1
4

(
∂2

∂x2 + ∂2

∂y2

)

for the normalized Laplacian, and

∂z := 1
2

(
∂

∂x
− i ∂

∂y

)
, ∂̄z := 1

2

(
∂

∂x
+ i ∂

∂y

)
,

for the standard complex derivatives; then Δ factors as Δz = ∂z∂̄z. Often we will drop 
the subscript for these differential operators when it is obvious from the context with 
respect to which variable they apply. We let C denote the complex plane, D the open 
unit disk, T := ∂D the unit circle, and De the exterior disk:

D := {z ∈ C : |z| < 1}, De := {z ∈ C∞ : |z| > 1}.

More generally, we write

D(z0, r) := {z ∈ C : |z − z0| < r}

for the open disk of radius r centered at z0.
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