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1. Introduction

We are concerned in this paper with the varieties WJ(C') of special linear series on
a general curve of fixed genus ¢ and gonality k£ over an algebraically closed field K with
mild restrictions on the characteristic. See Situation 1.4 for the necessary hypotheses.

For a general curve C' of genus g, we have k = L%J and the Brill-Noether theorem
6] says that dim W (C) is equal to the Brill-Noether number
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pg(d,r) =g — (r+1)(g—d+r),

unless py(d,r) < 0, in which case W} (C) = 0.

Our objective is to compute dim Wj(C') for non-generic values of k. We propose a
modification p, ;. (d,r) of the Brill-Noether number, incorporating the value of k, and
prove the following results. By convention, a negative estimate on dim Wj(C) means
that WJ(C) is empty.

Theorem 1.1. In Situation 1.4, dim Wji(C) <, ,(d, 7).

In characteristic 0, we may combine Theorem 1.1 with a lower bound from results of
Coppens and Martens [4], to obtain the following sharp results.

Theorem 1.2. In Situation 1.4, if char K = 0 and either k < 5 or k > %g + 2, then
dim W3 (C) = p, . (d, 7).

Theorem 1.3. In Situation 1.4, if char K = 0 and pg(d,r) > 0, then dimWj(C) =
pg(d,r) if and only ifr =0, g—d+r=1, org—k <d—2r.

All three theorems use the following notation and hypotheses.

Situation 1.4. Fix nonnegative integers g, k, r,d such that 2 < k < ggi?’ and g—d+r > 0.
Let K be an algebraically closed field, and C' be a general k-gonal curve of genus g over K.
Also assume that

e if k is odd, then char K # 2,
e if Kk =4 or 10, then char K # 3, and
o if kK =6, then char K # 5.

The hypothesis g—d+r > 0 is harmless, since g—d+r < 0 would imply automatically
that W} (C) = Picd(C’). The peculiar restrictions on the characteristic of K arise in our
proof when we must construct a tame morphism of metrized complexes with certain
properties. The characteristic 0 assumption in Theorems 1.2 and 1.3 is included because
these make use of constructions from [3] and [4], which assume this hypothesis.

1.1. The estimate p, 1. (d,r)
The estimate p, , (d,r) we refer to above is the following.

Definition 1.5. Let r’ denote the minimum of r and g — d + r — 1. Define

Pgi(d,r) = et (pg(d,r =€) = Ck).
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