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We prove that any complete, embedded minimal surface M
with finite topology in a homogeneous three-manifold N has
positive injectivity radius. When one relaxes the condition
that N be homogeneous to that of being locally homogeneous,
then we show that the closure of M has the structure of a
minimal lamination of N. As an application of this general
result we prove that any complete, embedded minimal surface
with finite genus and a countable number of ends is compact
when the ambient space is S® equipped with a homogeneous
metric of nonnegative scalar curvature.
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1. Introduction

In this paper we apply the Local Picture Theorem on the Scale of Topology, which is
Theorem 1.1 in [7] (see Theorem 1.5 below for the statement of this result in the finite
genus setting), to prove that the injectivity radii of certain minimal surfaces in certain

Riemannian three-manifolds are never zero.

Theorem 1.1. Let N be a complete, locally homogeneous® three-manifold with positive
injectivity radius. Then, every complete, embedded minimal surface of finite topology in

N has positive injectivity radius.

In the case that the ambient three-manifold NNV is isometric to S? x R with a scaling
of its standard product metric, then this result follows from Theorem 15 in [12] where
Meeks and Rosenberg also applied Theorem 1.1 in [7] to prove the stronger property
that such minimal surfaces have bounded second fundamental form, linear ambient area
growth and so they are also proper in S? x R. For background material on the geometry
and classification of homogeneous three-manifolds, see [6].

The next result removes the positive injectivity radius assumption for the ambient
space N. The conclusion that we obtain in this setting is also weaker than the one in
Theorem 1.1, as follows from the Minimal Lamination Closure Theorem in [12].

Corollary 1.2. If M is a complete embedded minimal surface of finite topology in a com-
plete, locally homogeneous three-manifold N, then the closure M has the structure of a
minimal lamination of N. Furthermore:

1. Each limit leaf of M is stable (more precisely, the two-sided cover of the leaf is
stable).

2. If N has positive scalar curvature, then M is proper in N.

3. If N is simply connected and has nonnegative scalar curvature, then M is proper
in N.

4. If N is the round three-sphere S3, then M is compact.

Remark 1.3. Item 1 of Corollary 1.2 still holds without the hypothesis on N to be lo-
cally homogeneous. On the other hand, it can be shown that there exists a Riemannian
metric of positive scalar curvature on the three-sphere that admits a complete embedded
minimal plane whose closure does not admit the structure of a minimal lamination (see
e.g., [1]). Hence, our hypothesis that N is locally homogeneous is necessary for items 2,
3 of Corollary 1.2 to hold.

3 A Riemannian manifold N is locally homogeneous if given two points in N, balls of the same sufficiently
small radius centered at these points are isometric.
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