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We prove that any complete, embedded minimal surface M
with finite topology in a homogeneous three-manifold N has 
positive injectivity radius. When one relaxes the condition 
that N be homogeneous to that of being locally homogeneous, 
then we show that the closure of M has the structure of a 
minimal lamination of N . As an application of this general 
result we prove that any complete, embedded minimal surface 
with finite genus and a countable number of ends is compact 
when the ambient space is S3 equipped with a homogeneous 
metric of nonnegative scalar curvature.
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1. Introduction

In this paper we apply the Local Picture Theorem on the Scale of Topology, which is 
Theorem 1.1 in [7] (see Theorem 1.5 below for the statement of this result in the finite 
genus setting), to prove that the injectivity radii of certain minimal surfaces in certain 
Riemannian three-manifolds are never zero.

Theorem 1.1. Let N be a complete, locally homogeneous3 three-manifold with positive 
injectivity radius. Then, every complete, embedded minimal surface of finite topology in 
N has positive injectivity radius.

In the case that the ambient three-manifold N is isometric to S2 × R with a scaling 
of its standard product metric, then this result follows from Theorem 15 in [12] where 
Meeks and Rosenberg also applied Theorem 1.1 in [7] to prove the stronger property 
that such minimal surfaces have bounded second fundamental form, linear ambient area 
growth and so they are also proper in S2 ×R. For background material on the geometry 
and classification of homogeneous three-manifolds, see [6].

The next result removes the positive injectivity radius assumption for the ambient 
space N . The conclusion that we obtain in this setting is also weaker than the one in 
Theorem 1.1, as follows from the Minimal Lamination Closure Theorem in [12].

Corollary 1.2. If M is a complete embedded minimal surface of finite topology in a com-
plete, locally homogeneous three-manifold N , then the closure M has the structure of a 
minimal lamination of N . Furthermore:

1. Each limit leaf of M is stable (more precisely, the two-sided cover of the leaf is 
stable).

2. If N has positive scalar curvature, then M is proper in N .
3. If N is simply connected and has nonnegative scalar curvature, then M is proper 

in N .
4. If N is the round three-sphere S3, then M is compact.

Remark 1.3. Item 1 of Corollary 1.2 still holds without the hypothesis on N to be lo-
cally homogeneous. On the other hand, it can be shown that there exists a Riemannian 
metric of positive scalar curvature on the three-sphere that admits a complete embedded 
minimal plane whose closure does not admit the structure of a minimal lamination (see 
e.g., [1]). Hence, our hypothesis that N is locally homogeneous is necessary for items 2, 
3 of Corollary 1.2 to hold.

3 A Riemannian manifold N is locally homogeneous if given two points in N , balls of the same sufficiently 
small radius centered at these points are isometric.
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