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The paper concerns the Cauchy problem on the relativistic 
Boltzmann equation for soft potentials in a periodic box. 
We show that the global-in-time solutions around relativistic 
Maxwellians exist in the weighted L∞ perturbation framework 
and also approach equilibrium states in large time in the 
weighted L2 framework at the rate of exp(−λtβ) for some 
λ > 0 and β ∈ (0, 1). The proof is based on the nonlinear 
L2 energy method and nonlinear L∞ pointwise estimate with 
appropriate exponential weights in momentum. The results 
extend those on the classical Boltzmann equation by Caflisch 
[2,3] and Strain and Guo [31] to the relativistic version, and 
also improve the recent result on almost exponential time-
decay by Strain [28] to the exponential rate. Moreover, we 
study the propagation of spatial regularity for the obtained 
solutions and also the large time behavior in the corresponding 
regular Sobolev space, provided that the spatial derivatives of 
initial data are bounded, not necessarily small.
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1. Introduction

The relativistic Boltzmann equation, which is a fundamental model describing the 
motion of fast moving particles in kinetic theory, takes the form of

P ⊗ ∂XF = −C(F, F ). (1.1)

Here ⊗ represents the Lorentz inner product (+ −−−) of 4-vector. As is customary we 
write X = (x0, x) with x ∈ T3 and x0 = −t, and P = (p0, p) with momentum p ∈ R3

and energy p0 =
√

c2 + |p|2, where c denotes the speed of light. For convenience of 
presentation, we rewrite (1.1) supplemented with initial data as

∂tF + p̂ · ∇xF = Q(F, F ), F (0, x, p) = F0(x, p), (1.2)

with Q(F, F ) = C(F, F )/p0, where the unknown F = F (t, x, p) stands for the density 
distribution function of time t ≥ 0, space x ∈ T3 and momentum p ∈ R3. Here the dot 
represents the standard Euclidean dot product, and the normalized velocity of a particle 
is denoted as

p̂ = c
p

p0
= p√

1 + |p|2/c2
.

It is known that the constant equilibrium state of (1.1) is the global relativistic 
Maxwellian, also called the Jütter solution, in the form of

J(p) = exp{−cp0/(kBT )}
4πckBTK2(c2/(kBT ) ,

where K2(z) := z2

2
∫∞
1 e−zt(t2 − 1)3/2dt is the Bessel function, T is temperature and 

kB is the Boltzmann’s constant. For notational simplicity we normalize all the physical 
constants to be one. Then the normalized global relativistic Maxwellian takes the form 
of

J(p) = e−p0

4π , p0 =
√

1 + |p|2. (1.3)
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