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smooth manifolds of dimension d > 2. We apply our version of
the Lojasiewicz—Simon gradient inequality [16,19] to remove
a positivity constraint on a combination of the Ricci and
Riemannian curvatures in a previous L%/ 2-energy gap result

Editors due to Gerhardt [23, Theorem 1.2] and a previous L>°-energy

gap result due to Bourguignon, Lawson, and Simons [10,
MSC: Theorem C], [11, Theorem 5.3], as well as an L2-energy
primary 58E15, 57TR57 gap result due to Nakajima [42, Corollary 1.2] for a Yang—
;‘iﬁ[‘"i‘;ary 37D15, 58D27, 70515, Mills connection over the sphere, S¢, but with an arbitrary

Riemannian metric.
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1. Introduction
1.1. Main result

The purpose of our article to establish the following

Theorem 1 (Ld/z-energy gap for Yang-Mills connections). Let G be a compact Lie group
and P be a principal G-bundle over a closed, smooth manifold, X, of dimension d > 2
and endowed with a smooth Riemannian metric, g. Then there is a positive constant,
e = e(d,9,G) € (0,1], with the following significance. If A is a smooth Yang—Mills
connection on P with respect to the metric, g, and its curvature, F4, obeys
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