

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Energy gap for Yang–Mills connections, II: Arbitrary closed Riemannian manifolds ☆

Paul M.N. Feehan

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States

ARTICLE INFO

Article history:
Received 4 May 2016
Received in revised form 2 March 2017
Accepted 22 March 2017
Available online 7 April 2017
Communicated by the Managing Editors

MSC: primary 58E15, 57R57 secondary 37D15, 58D27, 70S15, 81T13

Keywords:
Energy gaps
Flat connections
Flat bundles
Gauge theory
Lojasiewicz-Simon gradient
inequality
Morse theory on Banach manifolds
Closed Riemannian manifolds
Yang-Mills connections

ABSTRACT

We prove an $L^{d/2}$ energy gap result for Yang–Mills connections on principal G-bundles, P, over arbitrary, closed, Riemannian, smooth manifolds of dimension $d \geq 2$. We apply our version of the Łojasiewicz–Simon gradient inequality [16,19] to remove a positivity constraint on a combination of the Ricci and Riemannian curvatures in a previous $L^{d/2}$ -energy gap result due to Gerhardt [23, Theorem 1.2] and a previous L^{∞} -energy gap result due to Bourguignon, Lawson, and Simons [10, Theorem C], [11, Theorem 5.3], as well as an L^2 -energy gap result due to Nakajima [42, Corollary 1.2] for a Yang–Mills connection over the sphere, S^d , but with an arbitrary Riemannian metric.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: feehan@math.rutgers.edu.

[†] Paul Feehan was partially supported by National Science Foundation grant DMS-1510064, the Oswald Veblen Fund and Fund for Mathematics (Institute for Advanced Study, Princeton), and the Max Planck Institute for Mathematics, Bonn.

Contents

1.	Introd	uction	548
	1.1.	Main result	548
	1.2.	Comparison with previous Yang–Mills energy gap results	550
		1.2.1. Riemannian manifolds of arbitrary dimension $d \geq 2 \ldots \ldots$	550
		1.2.2. Four-dimensional Riemannian manifolds	551
	1.3.	Further research	553
		1.3.1. Complete non-compact Riemannian manifolds	553
		1.3.2. Adaptation of the gradient inequality paradigm to other problems in	
		geometric analysis and mathematical physics	553
	1.4.	Outline	554
2.			554
3.	Flat c	onnections and the Łojasiewicz–Simon gradient inequality	556
	3.1.	Existence and non-existence of flat connections	556
	3.2.	Flat bundles	557
	3.3.	Uhlenbeck compactness of the moduli space of flat connections $\ \ldots \ \ldots \ \ldots$	558
	3.4.	Łojasiewicz–Simon gradient inequality on a Sobolev neighborhood of a flat connection	
4.		ections with $L^{d/2}$ -small curvature and a priori estimates for Yang–Mills connections .	560
	4.1.	Connections with $L^{d/2}$ -small curvature	560
	4.2.	A priori estimate for the curvature of a Yang–Mills connection	561
5.		l existence of a flat connection and a Sobolev distance estimate	562
	5.1.	Existence of a flat connection when the curvature of the given connection is L^p small	
		for $d/2$	563
	5.2.	Existence of a global Coulomb gauge transformation	565
6.			568
	6.1.	Sobolev estimates of automorphisms of principal bundles with sufficiently small	
		transition functions	568
	6.2.	Sobolev estimates for transition functions of a principal bundle with a connection of	
		L^p small curvature	572
_	6.3.	Estimate of Sobolev distance to the flat connection	573
7.		letion of the proof of Theorem 1	576
	0	ments	578
Appe	ndix A.		578
	A.1.	Bochner–Weitzenböck formula and existence of an $L^{d/2}$ -energy gap	578
	A.2.	Estimate of Sobolev distance to the flat connection when $\operatorname{Ker} \Delta_{\Gamma} = 0 \dots \dots$	580
ъ с	A.3.	Existence of a flat connection when the curvature of the given connection is L^{∞} small	
References			

1. Introduction

1.1. Main result

The purpose of our article to establish the following

Theorem 1 ($L^{d/2}$ -energy gap for Yang-Mills connections). Let G be a compact Lie group and P be a principal G-bundle over a closed, smooth manifold, X, of dimension $d \geq 2$ and endowed with a smooth Riemannian metric, g. Then there is a positive constant, $\varepsilon = \varepsilon(d, g, G) \in (0, 1]$, with the following significance. If A is a smooth Yang-Mills connection on P with respect to the metric, g, and its curvature, F_A , obeys

Download English Version:

https://daneshyari.com/en/article/5778491

Download Persian Version:

https://daneshyari.com/article/5778491

<u>Daneshyari.com</u>