

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Orientability for gauge theories on Calabi–Yau manifolds

MATHEMATICS

霐

Yalong Cao^{*}, Naichung Conan Leung

The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

A R T I C L E I N F O

Article history: Received 22 June 2015 Received in revised form 28 April 2017 Accepted 28 April 2017 Available online xxxx Communicated by Tony Pantev

MSC: 14N35 14J32 53C27 81T13

Keywords: Orientability Moduli spaces of sheaves Calabi–Yau manifolds Shifted symplectic structures Gauge theory Dirac operators

АВЅТ КАСТ

We study orientability issues of moduli spaces from gauge theories on Calabi–Yau manifolds. Our results generalize and strengthen those for Donaldson–Thomas theory on Calabi– Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the relative situation which is relevant to the gluing formula in DT theory.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: ylcao@math.cuhk.edu.hk (Y. Cao), leung@math.cuhk.edu.hk (N.C. Leung).

1. Introduction

Donaldson invariants count anti-self-dual connections on closed oriented 4-manifolds [17]. The definition requires an orientability result proved by Donaldson in [19]. Indeed, Donaldson theory fits into a 3-dimensional TQFT structure in the sense of Atiyah [2]. In particular, relative Donaldson invariants for $(X, Y = \partial X)$ take values in the instanton Chern–Simons–Floer (co)homology $HF^*_{CS}(Y)$ [20,48]. The Euler characteristic of $HF^*_{CS}(Y)$ is the Casson invariant which counts flat connections on a closed 3-manifold Y.

As was proposed by Donaldson and Thomas [22], we are interested in the *complexification* of the above theory. Namely, we consider holomorphic vector bundles (or general coherent sheaves) over Calabi–Yau manifolds [49]. The complex analogues of (i) Donaldson invariants, (ii) Chern–Simons–Floer (co)homology $HF_{CS}^*(Y)$, and (iii) Casson invariants are (i) DT_4 invariants, (ii) DT_3 (co)homology $H_{DT_3}^*(Y)$, and (iii) DT_3 invariants.

As a complexification of Casson invariants, Thomas defined Donaldson–Thomas invariants for Calabi–Yau 3-folds [45]. DT_3 invariants for ideal sheaves of curves are related to many other interesting subjects including the Gopakumar–Vafa conjecture on BPS numbers in string theory [24,26,32] and the MNOP conjecture [35–37,41] which relates DT_3 invariants and Gromov–Witten invariants. The generalization of DT_3 invariants that count strictly semi-stable sheaves is due to Joyce and Song [31] using Behrend's result [5]. Kontsevich and Soibelman proposed refined as well as motivic DT theory for Calabi–Yau 3-categories [33], which was later studied by Behrend, Bryan and Szendröi [6] for Hilbert schemes of points. The wall-crossing formula [33,31] is an important structure for Bridgeland's stability condition [11] and Pandharipande–Thomas invariants [42, 46].

As a complexification of Chern–Simons–Floer theory, Brav, Bussi, Dupont, Joyce and Szendroi [9], Kiem and Li [32] recently defined a cohomology theory on Calabi– Yau 3-folds whose Euler characteristic is the DT_3 invariant. The point is that moduli spaces of simple sheaves on Calabi–Yau 3-folds are locally critical points of holomorphic functions [10,31], and we could consider perverse sheaves of vanishing cycles of these functions. They glued these local perverse sheaves and defined DT_3 cohomology as its hypercohomology. In general, gluing these perverse sheaves requires a choice of a square root of the determinant line bundle of the moduli space. Nekrasov and Okounkov proved its existence in [40]. The square root is called an orientation data if it is furthermore compatible with wall-crossing (or Hall algebra structure) [33] whose existence was proved by Hua on simply-connected torsion-free CY_3 [27].

As a complexification of Donaldson theory, Borisov and Joyce [7] and the authors [13,14] developed DT_4 invariants (or 'holomorphic Donaldson invariants') which count stable sheaves on Calabi–Yau 4-folds. To define the invariants, we need an orientability result, which was obtained by the authors in [14] for Calabi–Yau 4-fold X which satisfies

Download English Version:

https://daneshyari.com/en/article/5778503

Download Persian Version:

https://daneshyari.com/article/5778503

Daneshyari.com