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class of random walks, where all sub-Riemannian geodesics

Keywords: are taken in account. This operator depends only on the choice
Sub-Laplacian of a complement ¢ to the sub-Riemannian distribution, and
Convergence of random walks is denoted by L°.

Sub-Riemannian geometry We address the problem of equivalence of the two operators.
Sub-Riemannian volume This problem is interesting since, on equiregular sub-Rieman-

nian manifolds, there is always an intrinsic volume (e.g. Popp’s
one P) but not a canonical choice of complement. The result
depends heavily on the type of structure under investigation:

¢ On contact structures, for every volume w, there exists a
unique complement ¢ such that A, = L°.

¢ On Carnot groups, if H is the Haar volume, then there
always exists a complement ¢ such that Ay = L°.
However this complement is not unique in general.

e For quasi-contact structures, in general, Ap # L€ for
any choice of c. In particular, L® is not symmetric with
respect to Popp’s measure. This is surprising especially in
dimension 4 where, in a suitable sense, Ap is the unique
intrinsic macroscopic Laplacian.
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A crucial notion that we introduce here is the N-intrinsic
volume, i.e. a volume that depends only on the set of
parameters of the nilpotent approximation. When the nilpo-
tent approximation does not depend on the point, a N-
intrinsic volume is unique up to a scaling by a constant
and the corresponding N-intrinsic sub-Laplacian is unique.
This is what happens for dimension less than or equal to 4,
and in particular in the 4-dimensional quasi-contact structure
mentioned above.
Finally, we prove a general theorem on the convergence
of families of random walks to a diffusion, that gives, in
particular, the convergence of the random walks mentioned
above to the diffusion generated by L°€.
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