

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry

Ugo Boscain^a, Robert Neel^{b,*}, Luca Rizzi^c

- ^a CMAP, École Polytechnique, CNRS, Inria, Université Paris-Saclay, France
- ^b Lehigh University, Bethlehem, PA, United States
- ^c Univ. Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France

ARTICLE INFO

Article history: Received 8 January 2016 Received in revised form 25 April 2017 Accepted 26 April 2017 Communicated by D.W. Stroock

Keywords:
Sub-Laplacian
Convergence of random walks
Sub-Riemannian geometry
Sub-Riemannian volume

ABSTRACT

On a sub-Riemannian manifold we define two types of Laplacians. The $macroscopic\ Laplacian\ \Delta_{\omega}$, as the divergence of the horizontal gradient, once a volume ω is fixed, and the $microscopic\ Laplacian$, as the operator associated with a sequence of geodesic random walks. We consider a general class of random walks, where all sub-Riemannian geodesics are taken in account. This operator depends only on the choice of a complement ${\bf c}$ to the sub-Riemannian distribution, and is denoted by $L^{\bf c}$.

We address the problem of equivalence of the two operators. This problem is interesting since, on equiregular sub-Riemannian manifolds, there is always an intrinsic volume (e.g. Popp's one \mathcal{P}) but not a canonical choice of complement. The result depends heavily on the type of structure under investigation:

- On contact structures, for every volume ω , there exists a unique complement ${\bf c}$ such that $\Delta_{\omega}=L^{\bf c}.$
- On Carnot groups, if H is the Haar volume, then there
 always exists a complement c such that Δ_H = L^c.
 However this complement is not unique in general.
- For quasi-contact structures, in general, Δ_P ≠ L^c for any choice of c. In particular, L^c is not symmetric with respect to Popp's measure. This is surprising especially in dimension 4 where, in a suitable sense, Δ_P is the unique intrinsic macroscopic Laplacian.

^{*} Corresponding author.

E-mail address: robert.neel@lehigh.edu (R. Neel).

A crucial notion that we introduce here is the *N-intrinsic volume*, i.e. a volume that depends only on the set of parameters of the nilpotent approximation. When the nilpotent approximation does not depend on the point, a *N-intrinsic volume* is unique up to a scaling by a constant and the corresponding *N-intrinsic sub-Laplacian* is unique. This is what happens for dimension less than or equal to 4, and in particular in the 4-dimensional quasi-contact structure mentioned above.

Finally, we prove a general theorem on the convergence of families of random walks to a diffusion, that gives, in particular, the convergence of the random walks mentioned above to the diffusion generated by $L^{\mathbf{c}}$.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introd	luction	26
	1.1.	The Riemannian setting	26
	1.2.	The sub-Riemannian setting	29
		1.2.1. The sub-Riemannian macroscopic Laplacian	30
		1.2.2. On intrinsic volumes	31
		1.2.3. The sub-Riemannian microscopic Laplacian	32
	1.3.	The equivalence problem	
		1.3.1. Contact structures	36
		1.3.2. Carnot groups	36
		1.3.3. Quasi-contact structures	37
		1.3.4. Convergence of random walks	38
	1.4.	Comparison with recent literature	38
2.	Prelin	ninaries	11
	2.1.	Computations with frames	13
	2.2.	A Taylor expansion with frames	14
3.	On vo	lume forms in (sub)-Riemannian geometry	16
	3.1.	The nilpotent approximation	17
	3.2.	Popp's volume	17
		3.2.1. Behavior under isometries	19
	3.3.	Intrinsic volumes	19
		3.3.1. Equi-nilpotentizable structures	2
		3.3.2. Homogeneous (sub)-Riemannian structures	3
4.	The n	nacroscopic Laplacian	4
5.		nicroscopic Laplacian	5
	5.1.	A class of adapted measures	6
	5.2.	Horizontal divergence	-
6.		quivalence problem	_
7.		t groups	
8.		k 1 structures	
	8.1.	On natural Riemannian extensions and Popp's volume	
9.		ct structures	
	9.1.	Integrability conditions	_
10.	•	-contact structures	-
	10.1.	The quasi-Reeb vector field	
	10.2.	An example of non-existence	
11.		ergence of random walks	
	11.1.	A general class of random walks	
	11.2.	Background on diffusions and pathspace	'5

Download English Version:

https://daneshyari.com/en/article/5778505

Download Persian Version:

https://daneshyari.com/article/5778505

<u>Daneshyari.com</u>