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is a co-H-space, thus splitting unstably in terms of its full
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conjecture holds that a moment-angle complex over a Golod
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1. Introduction

Polyhedral products have been the subject of quite a bit of interest recently, beginning
with their appearance as homotopy theoretical generalisations of various objects stud-
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ied in toric topology. Of particular importance are the polyhedral products (D?, S1)%
and (CP>, %)X known as moment-angle complezes and Davis—Januszkiewicz spaces re-
spectively. The homotopy theory of these spaces has many applications — from complex
and symplectic geometry (cf. [8,27,26]), to combinatorial and homological algebra (cf.
[32,3]). For example, moment—angle manifolds appear as intersection of quadrics or as
quasitoric manifolds after taking a certain orbit space, Stanley—Reisner rings of simplicial
complexes are realised by the cohomology of Davis—Januszkiewicz spaces (equivalently,
the equivariant cohomology ring of moment-angle complexes), while the cohomology
ring of moment—angle complexes is closely related to the study of the cohomology of
local rings (cf. [10,9]). One would like to know how the combinatorics of the underly-
ing simplicial complex K encodes geometrical and topological properties of polyhedral
products, and vice-versa. The case of Golod complexes is especially relevant. A ring
R = Kk[vy,...,v,]/I for I a homogeneous ideal is said to be Golod if all products
and higher Massey products in Tor]f[vhm)vn](R, k) vanish. Golod [17] showed that the
Poincaré series of the homology ring Torgp(k,k) of R is a rational function whenever
R is Golod. From the context of combinatorics, a simplicial complex K on vertex set
[n] = {1,...,n} is said to be Golod over k if the Stanley—Reisner ring k[K] is Golod,
and if this is true for all fields k and k = Z, we simply say that K is Golod. Fix-
ing k to be a field or Z, by [9,15,5,22] there are isomorphisms of graded commutative
algebras

H*((D?, 8")X; k) = Tory,,,....0, (K[K]. k) = @ H* (214K, ] k)
IC[n]

where k[K] is the Stanley—Reisner ring of K, K is the restriction of K to vertex set
I C [n], and the multiplication in the rightmost algebra is realised by maps

Lr,J: |KIUJ| — |K[*KJ| = |KI|*|KJ| ’ZE|K}|/\|K]‘,

induced by the canonical inclusions K,y — K7 * K; whenever I and J are non-empty
and disjoint. The Golod condition can then be reinterpreted as ¢y ; inducing trivial maps
on k-cohomology for disjoint non-empty I and J together with Massey products vanish-
ing in H+((D?, S1)%; k). This topological interpretation of the Golod condition has been
a starting point for applying the homotopy theory of moment—angle complexes to the
problem of determining which simplicial complexes K are Golod, see [19] for example.
In the opposite direction, the cohomology of a moment-angle complex (D?, S1)¥ takes
its simplest algebraic form when we restrict to Golod K. Golod complexes are therefore
a natural starting point for studying the homotopy types of moment—angle complexes.

Considerable work has been done on the homotopy theory of moment-angle com-
plexes over Golod complexes [18-20,24,23,21], culminating in the following conjectured
topological characterisation of the Golod complexes.
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