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We prove a higher regularity result for the free boundary in 
the obstacle problem for the fractional Laplacian via a higher 
order boundary Harnack estimate.
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1. Introduction and main results

In this paper, we investigate the higher regularity of the free boundary in the fractional 
obstacle problem. We prove a higher order boundary Harnack estimate, building on ideas 
developed by De Silva and Savin in [12–14]. As a consequence, we show that if the obstacle 
is Cm,β , then the free boundary is Cm−1,α near regular points for some 0 < α ≤ β. In 
particular, smooth obstacles yield smooth free boundaries near regular points.
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1.1. The fractional obstacle problem

For a given function (obstacle) ϕ ∈ C(Rn) decaying rapidly at infinity and s ∈ (0, 1), 
a function v is a solution of the fractional obstacle problem if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(x) ≥ ϕ(x) in R
n

lim|x|→∞ v(x) = 0 on R
n

(−Δ)sv(x) ≥ 0 in R
n

(−Δ)sv(x) = 0 in {v > ϕ}

(1.1)

where the s-Laplacian (−Δ)s of a function u is defined by

(−Δ)su(x) := cn,s PV
ˆ

Rn

u(x) − u(x + z)
|z|n+2s dz.

The sets

P := {v = ϕ} and Γ := ∂{v = ϕ}

are known as the contact set and the free boundary respectively.
The fractional obstacle problem appears in many contexts, including the pricing of 

American options with jump processes (see [11] and the Appendix of [5] for an informal 
discussion) and the study of the regularity of minimizers of nonlocal interaction energies 
in kinetic equations (see [10]).

While the obstacle problem for the fractional Laplacian is nonlocal, it admits a local 
formulation thanks to the extension method (see [9,24]). Specifically, one considers the 
a-harmonic1 extension ṽ of v to the upper half-space Rn+1

+ := R
n × (0, ∞):

{
Laṽ(x, y) = 0 in R

n+1
+

ṽ(x, 0) = v(x) on R
n

where

Lau(x, y) := div(|y|a∇u(x, y)) and a := 1 − 2s ∈ (−1, 1).

The function ṽ is obtained as the minimizer of the variational problem

min
{ ˆ

R
n+1
+

|∇u|2 |y|adx dy : u ∈ H1(Rn+1
+ , |y|a), u(x, 0) = v(x)

}

1 We say a function u is a-harmonic if Lau = 0.
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