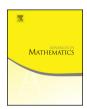


Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim



Cartesian modules over representations of small categories

Sergio Estrada¹, Simone Virili^{*,2}

Departamento de Matemáticas, Universidad de Murcia, Campus Espinardo 30100, Murcia, Spain

ARTICLE INFO

Article history:
Received 4 June 2015
Received in revised form 17 January 2017
Accepted 26 January 2017

Communicated by Henning Krause Dedicated to Luigi Salce on the occasion of his retirement.

MSC: primary 18E05, 18G15, 18F20, 18A25

Keywords: Preadditive category Cartesian module Representation Pure derived category

ABSTRACT

We introduce the new concept of cartesian module over a pseudofunctor R from a small category to the category of small preadditive categories. Already the case when R is a (strict) functor taking values in the category of commutative rings is sufficient to cover the classical construction of quasicoherent sheaves of modules over a scheme. On the other hand, our general setting allows for a good theory of contravariant additive locally flat functors, providing a geometrically meaningful extension of a classical Representation Theorem of Makkai and Paré. As an application, we relate and extend some previous constructions of the pure derived category of a scheme.

© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: sestrada@um.es (S. Estrada), virili.simone@gmail.com (S. Virili).

¹ The first named author was supported by the research grant 18394/JLI/13 of the Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia in the framework of III PCTRM 2011–2014. Furthermore, he is grateful to the Department of Mathematics of the M.I.T. for its hospitality.

 $^{^2\,}$ The second named author was partially supported by Fondazione Cassa di Risparmio di Padova e Rovigo (Progetto di Eccellenza "Algebraic structures and their applications"), and by the projects DGI MINECO MTM2011-28992-C02-01 and MINECO MTM2014-53644-P (Spain).

Contents

1.	Introd	uction
2.	Rings	with several objects and their modules
	2.1.	Generalities
		2.1.1. Preadditive categories
		2.1.2. Modules
		2.1.3. Bimodules
	2.2.	Tensor product and flat modules
		2.2.1. The tensor product functor
		2.2.2. Tensor product of bimodules
		2.2.3. Flat modules
	2.3.	Change of base
	2.4.	Makkai and Paré's classical result
3.	Modu	les over representations of small categories
	3.1.	Representations of small categories
	3.2.	The category of modules
	3.3.	Flat modules
	3.4.	The category of cartesian modules
4.	The re	epresentation theorem
	4.1.	The induced change of base
	4.2.	The induced representation
	4.3.	The Representation Theorem
5.	Pure i	njective envelopes and the pure derived category
	5.1.	Covers, envelopes and cotorsion pairs
	5.2.	Pure injective envelopes
	5.3.	Induced cotorsion pairs in a Grothendieck category
	5.4.	The pure derived category of cartesian modules 602
Appe	ndix A.	Purity in functor categories
	A.1.	From (C^{op}, Ab) to Mod- R_C
	A.2.	From Mod- $R_{\mathcal{C}}$ to $\sigma(R_{\mathcal{C}})$

1. Introduction

Let X be a small site (that is, a small category whose Grothendieck topology is defined by a pretopology, see [31]). The usual way of defining a ringed site is by considering pairs (X, \mathcal{O}_X) , where \mathcal{O}_X is a sheaf of commutative rings. More generally a ringed category (X, \mathcal{O}_X) is a pair such that X is a small category and \mathcal{O}_X is a presheaf of commutative rings on X. Then, the category of presheaves of \mathcal{O}_X -modules on X can be defined. On the other hand, a (not necessarily commutative) ring may be regarded as a special case of a small preadditive category, that is, a small category R such that R(a, b) is an Abelian group, for each $a, b \in \mathrm{Ob}R$, and morphism composition distributes over addition. So the category of modules over a preadditive category naturally arises. There are many sources in the literature which deal with this generalization. Quoting from [25], "[...] there have been several papers concerned with replacing theorems about rings by theorems about additive³ categories. What does not seem to be generally realized is the

³ In [25], Mitchell uses the term "additive" for what is usually known as "preadditive".

Download English Version:

https://daneshyari.com/en/article/5778599

Download Persian Version:

https://daneshyari.com/article/5778599

Daneshyari.com