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In this paper we prove discreteness of the spectrum of the 
Neumann–Laplacian (the free membrane problem) in a large 
class of non-convex space domains. The lower estimates of the 
first non-trivial Neumann eigenvalue are obtained in terms of 
geometric characteristics of Sobolev mappings. The suggested 
approach is based on Sobolev–Poincaré inequalities that are 
obtained with the help of a geometric theory of composition 
operators on Sobolev spaces. These composition operators 
are induced by generalizations of conformal mappings that are
called as mappings of bounded 2-distortion (weak 2-quasiconformal 
mappings).
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1. Introduction

The classical upper estimate for the first nontrivial Neumann eigenvalue of the Laplace 
operator

μ1(Ω) ≤ μ1(Ω∗) =
p2
n/2

R2
∗

was proved by Szegö [38] for simply connected planar domains via a conformal map-
pings technique (“the method of conformal normalization”) and by Weinberger [44] for 
domains in Rn. In this inequality pn/2 denotes the first positive zero of the function 
(t1−n/2Jn/2(t))′, and Ω∗ is an n-ball of the same n-volume as Ω with R∗ as its radius. 
In particular, if n = 2 we have p1 = j′1,1 ≈ 1.84118 where j′1,1 denotes the first positive 
zero of the derivative of the Bessel function J1.

More detailed upper estimates for planar domains were obtained in [33] and [25] via 
“the method of conformal normalization”. The upper estimates of the Laplace eigenvalues 
with the help of different techniques were intensively studied in the recent decades, see, 
for example, [1–3,11,27].

Situation with lower estimates is more complicated. The classical result by Payne and 
Weinberger [32] states that in convex domains Ω ⊂ Rn, n ≥ 2

μ1(Ω) ≥ π2

d(Ω)2 ,

where d(Ω) is a diameter of a convex domain Ω. Unfortunately in non-convex domains 
μ1(Ω) can not be estimated in the terms of Euclidean diameters. It can be seen by 
considering a domain consisting of two identical squares connected by a thin corridor [6]. 
In [7,8] lower estimates involved the isoperimetric constant relative to Ω were obtained.

In the works [20,21] we returned to a conformal mappings techniques and obtained 
lower estimates of μ1(Ω) in the terms of the hyperbolic (conformal) radius of Ω for a 
large class of general (non-necessary convex) domains Ω ⊂ R2. For example, this class 
includes some domains with fractal boundaries which Hausdorff dimension can be any 
number of the half interval [1, 2).

Our method is different from “the method of conformal normalization” and based on 
the variational formulation of spectral problems and on the geometric theory of com-
position operators on Sobolev spaces, developed in our previous papers [14,39,40,42,43]. 
Roughly speaking we “transferred” known estimates (from convex Lipschitz domains) to 
“general” domains with a help of composition operators induced by conformal mappings.

The variational formulation of the spectral problem for the Laplace operator is usually 
based on the Dirichlet (energy) integral

‖u | L1
2(Ω)‖2 =

∫
Ω

|∇u(x)|2 dx,

and was established in [34] by Lord Rayleigh.
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