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We propose the analogues of boundary layer potentials for the 
sub-Laplacian on homogeneous Carnot groups/stratified Lie 
groups and prove continuity results for them. In particular, we 
show continuity of the single layer potential and establish the 
Plemelj type jump relations for the double layer potential. 
We prove sub-Laplacian adapted versions of the Stokes 
theorem as well as of Green’s first and second formulae 
on homogeneous Carnot groups. Several applications to 
boundary value problems are given. As another consequence, 
we derive formulae for traces of the Newton potential 
for the sub-Laplacian to piecewise smooth surfaces. Using 
this we construct and study a nonlocal boundary value 
problem for the sub-Laplacian extending to the setting of 
the homogeneous Carnot groups M. Kac’s “principle of not 
feeling the boundary”. We also obtain similar results for higher 
powers of the sub-Laplacian. Finally, as another application, 
we prove refined versions of Hardy’s inequality and of the 
uncertainty principle.
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1. Introduction

The central idea of solving boundary value problems for differential equations in a do-
main requires the knowledge of the corresponding fundamental solutions, and this idea 
has a long history dating back to the works of mathematicians such as Gauss [21,22]
and Green [27]. Nowadays the appearing boundary layer operators and elements of the 
potential theory serve as major tools for the analysis and construction of solutions to 
boundary value problems. There is vast literature concerning modern theory of boundary 
layer operators and potential theory as well as their important applications. In addition, 
in last decades many interesting and promising works combining the group theory with 
the analysis of partial differential equations have been presented by many authors. For ex-
ample, nilpotent Lie groups play an important role in deriving sharp subelliptic estimates 
for differential operators on manifolds, starting from the seminal paper by Rothschild 
and Stein [37]. Moreover, in recent decades, there is a rapidly growing interest for sub-
Laplacians on Carnot groups (and also for operators on graded Lie groups), because 
these operators appear not only in theoretical settings (see e.g. Gromov [28] or Danielli, 
Garofalo and Nhieu [9] for general expositions from different points of view), but also 
in application settings such as mathematical models of crystal material and human vi-
sion (see, for example, [6] and [7]). Moreover, sub-Laplacians on homogeneous Carnot 
groups serve as approximations for general Hörmander’s sums of squares of vector fields 
on manifolds in view of the Rothschild–Stein lifting theorem [37] (see also [16,38]).

In this paper we discuss elements of the potential theory and the theory of boundary 
layer operators on homogeneous Carnot groups. As we are not relying on the use of the 
control distance but on the fundamental solutions everything remains exactly the same 
(without any changes) if we replace the words ‘homogeneous Carnot group’ by ‘stratified 
Lie group’. However, as a larger part of the current literature seems to use the former 
terminology we also adopt it for this paper.

From a different point of view than ours similar problems have been considered by 
Folland and Stein [17], Geller [24], Jerison [29], Romero [36], Capogna, Garofalo and
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