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We prove that if φ : (X, 0) → (X, 0) is a finite endomorphism 
of an isolated singularity such that deg(φ) ≥ 2 and φ is étale 
in codimension 1, then X is Q-Gorenstein and log canonical.
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1. Introduction

Let us start with an easy example. Let C be a smooth curve of genus g. By an argument 
using Riemann–Hurwitz Theorem, one can see that C has a finite endomorphism φ of 
degree ≥ 2 if and only if g ≤ 1. In this case, assume that there is an ample divisor H on 
C such that φ∗H is a multiple of H. Then φ induces a finite endomorphism on the cone 
X over C with polarization mH, where m is a sufficiently large integer. On the other 
hand, one can see easily by adjunction that a normal cone over a smooth curve of genus 
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g has log canonical singularity if and only if g ≤ 1. This phenomenon is true in general. 
In this paper, we prove the following theorem:

Theorem 1.1. Let (X, 0) be a normal projective variety with isolated singularity 0 ∈ X. 
Suppose that there exists a finite endomorphism φ : (X, 0) → (X, 0) such that degφ ≥ 2
and φ is étale in codimension 1. Then X is Q-Gorenstein and log canonical.

The assumption that X has isolated singularity is necessary. Otherwise, let X = E×V , 
where E is an elliptic curve and V is an arbitrary variety with a bad singularity. Then 
X has an induced noninvertible étale endomorphism from E.

We briefly review the history of this problem. For the definitions of related termi-
nologies, we refer to Section 2 and [1]. The surface case is studied in [24]. Let X be a 
normal surface and f : Y → X be the minimal resolution. The relative Zariski decompo-
sition yields KY/X = P +N . Wahl’s invariant is defined as the nonnegative intersection 
number −P 2, which is the key ingredient in the study of surfaces with noninvertible 
finite endomorphisms. A classification of such surfaces is given in [7,9]. Wahl’s invariant 
is generalized to higher dimensions by Boucksom, de Fernex and Favre [1]. Due to the 
absence of minimal resolutions, they consider log discrepancy divisors on all birational 
models over X as Shokurov’s b-divisor AX/X . The Zariski decomposition is replaced by 
the nef envelope EnvX (AX/X). It can be shown that −(EnvX (AX/X))n is a well-defined 
finite nonnegative number, which is called volBdFF(X). This volume behaves well under 
finite morphisms. In particular, they prove the following theorem:

Theorem 1.2. [1, Theorem A and B], [13, Proposition 2.12] For normal isolated singu-
larities (X, 0) with noninvertible finite endomorphism, volBdFF(X) = 0. Moreover, when 
X is Q-Gorenstein, volBdFF(X) = 0 if and only if X has log canonical singularity.

The same theorem is obtained in [4] by analyzing the behavior of non-log-canonical 
centers under finite pullback. In [13], Fulger defines a courser volume volF(X) as the 
asymptotic order of growth of plurigenera, which coincides with volBdFF(X) when X is 
Q-Gorenstein.

Unfortunately, in [26], the author produces a non-Q-Gorenstein isolated singularity 
(X, 0) such that volBdFF(X) = 0 while there is no boundary Δ such that (X, Δ) is 
log canonical. We should remark that, in this example, X admits a small log canonical 
modification [23], [4, Proposition 2.4].

The Q-Gorenstein case is further studied in [26, Section 3]. Specifically, the author 
shows that, like the surface case, volBdFF(X) can be calculated by an intersection number 
on a certain birational model f : Y → X, namely, the log canonical modification [23]. 
A key property of such a model is that KY + Ef is f -ample, where Ef is the reduced 
exceptional divisor. In the non-Q-Gorenstein case, the existence of the log canonical 
modification is conjectured to be true assuming the full minimal model program including 
the abundance conjecture, but has not yet been proved.
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