

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

On q-integrals over order polytopes *

Jang Soo Kim^{a,*}, Dennis Stanton^b

Department of Mathematics, Sungkyunkwan University, Suwon, South Korea
 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

ARTICLE INFO

Article history: Received 3 September 2016 Received in revised form 14 December 2016 Accepted 1 January 2017 Communicated by George E. Andrews

MSC: primary 05A30 secondary 05A15, 06A07

Keywords: q-Integral Order polytope q-Selberg integral Reverse plane partition q-Ehrhart polynomial

ABSTRACT

A combinatorial study of multiple q-integrals is developed. This includes a q-volume of a convex polytope, which depends upon the order of q-integration. A multiple q-integral over an order polytope of a poset is interpreted as a generating function of linear extensions of the poset. Specific modifications of posets are shown to give predictable changes in q-integrals over their respective order polytopes. This method is used to combinatorially evaluate some generalized q-beta integrals. One such application is a combinatorial interpretation of a q-Selberg integral. New generating functions for generalized Gelfand—Tsetlin patterns and reverse plane partitions are established. A q-analogue to a well known result in Ehrhart theory is generalized using q-volumes and q-Ehrhart polynomials.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	1270
2.	Definitions	1272
3.	Properties of q-integrals	1277

E-mail addresses: jangsookim@skku.edu (J.S. Kim), stanton@math.umn.edu (D. Stanton).

 $^{^{\,\}pm}$ The first author was supported by NRF grants (NRF-2016R1D1A1A09917506) and (NRF-2016R1A5A1008055), and the TJ Park Science Fellowship. The second author was supported by NSF grant DMS-1148634.

^{*} Corresponding author.

4.	7-Integrals over order polytopes	1281
5.	Operations on posets	1286
6.	Examples of q-integrals	1291
	6.1. The q -beta integral	1291
	6.2. A q-analogue of Dirichlet's integral	1291
	6.3. The general q-beta integral of Andrews and Askey	1292
	6.4. q-Integrals of monomials over the order polytope of a forest poset	1294
7.	7-Selberg integrals	1296
8.	Reverse plane partitions	1300
	8.1. Shifted reverse plane partitions with fixed diagonal entries	1304
	8.2. Generalized Gelfand-Tsetlin patterns	1306
	8.3. The trace-generating function for reverse plane partitions	1307
	8.4. The trace-generating function for shifted reverse plane partitions	1309
	8.5. Reverse plane partitions and the q-Selberg integral	1310
9.	q-Ehrhart polynomials	1313
Ackno	vledgments	1316
Refer	nces	1316

1. Introduction

The main object in this paper is the q-integral

$$\int_{0}^{1} f(x)d_{q}x = (1-q)\sum_{i=0}^{\infty} f(q^{i})q^{i},$$

which was introduced by Thomae [23] and Jackson [12]. The q-integral is a q-analogue of the Riemann integral. Fermat used it to evaluate $\int_0^1 x^n dx$. See [2, §10.1] for more details of the history of q-integrals. Many important integrals have q-analogues in terms of q-integrals, such as q-beta integrals and q-Selberg integrals. In this paper we develop combinatorial methods to study q-integrals.

The original motivation of this paper was to generalize Stanley's combinatorial interpretation of the Selberg integral [19]

$$\int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} x_{i}^{\alpha-1} (1-x_{i})^{\beta-1} \prod_{1 \leq i < j \leq n} |x_{i}-x_{j}|^{2\gamma} dx_{1} \cdots dx_{n}$$

$$= \prod_{i=1}^{n} \frac{\Gamma(\alpha+(j-1)\gamma)\Gamma(\beta+(j-1)\gamma)\Gamma(1+j\gamma)}{\Gamma(\alpha+\beta+(n+j-2)\gamma)\Gamma(1+\gamma)},$$

where n is a positive integer and α, β, γ are complex numbers such that $\text{Re}(\alpha) > 0$, $\text{Re}(\beta) > 0$, and $\text{Re}(\gamma) > -\min\{1/n, \text{Re}(\alpha)/(n-1), \text{Re}(\beta)/(n-1)\}$. Stanley [22, Exercise 1.10 (b)] found a combinatorial interpretation of the above integral when $\alpha - 1, \beta - 1$ and 2γ are nonnegative integers in terms of permutations. His idea is to interpret the integral as the probability that a random permutation satisfies certain properties. This

Download English Version:

https://daneshyari.com/en/article/5778665

Download Persian Version:

https://daneshyari.com/article/5778665

Daneshyari.com