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1. Introduction

The main object in this paper is the g-integral
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which was introduced by Thomae [23] and Jackson [12]. The g-integral is a g-analogue
of the Riemann integral. Fermat used it to evaluate fol x2"dz. See [2, §10.1] for more
details of the history of g-integrals. Many important integrals have g-analogues in terms
of g-integrals, such as g-beta integrals and g-Selberg integrals. In this paper we develop
combinatorial methods to study g-integrals.

The original motivation of this paper was to generalize Stanley’s combinatorial inter-
pretation of the Selberg integral [19]
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where n is a positive integer and «, 3,7 are complex numbers such that Re(a) > 0,
Re(f) > 0, and Re(y) > —min{1/n,Re(a)/(n — 1),Re(B)/(n — 1)}. Stanley [22, Exer-
cise 1.10 (b)] found a combinatorial interpretation of the above integral when «—1,8—1
and 2v are nonnegative integers in terms of permutations. His idea is to interpret the
integral as the probability that a random permutation satisfies certain properties. This
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