

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Subdyadic square functions and applications to weighted harmonic analysis [☆]

David Beltran*, Jonathan Bennett

Department of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

ARTICLE INFO

Article history:
Received 3 November 2015
Received in revised form 4 November 2016
Accepted 14 November 2016
Available online xxxx
Communicated by Charles Fefferman

Keywords: Square functions Fourier multipliers Weighted inequalities Oscillatory integrals

ABSTRACT

Through the study of novel variants of the classical Littlewood–Paley–Stein g-functions, we obtain pointwise estimates for broad classes of highly-singular Fourier multipliers on \mathbb{R}^d satisfying regularity hypotheses adapted to fine (subdyadic) scales. In particular, this allows us to efficiently bound such multipliers by geometrically-defined maximal operators via general weighted L^2 inequalities, in the spirit of a well-known conjecture of Stein. Our framework applies to solution operators for dispersive PDE, such as the time-dependent free Schrödinger equation, and other highly oscillatory convolution operators that fall well beyond the scope of the Calderón–Zygmund theory.

© 2016 Published by Elsevier Inc.

1. Introduction

A common feature of many themes in both classical and contemporary harmonic analysis is the pivotal role played by operators which exhibit a certain *quadratic* structure. Such operators are usually referred to as *square functions*, and their study has its roots

[†] This work was supported by the European Research Council [grant number 307617].

^{*} Corresponding author.

E-mail addresses: d.beltran@pgr.bham.ac.uk (D. Beltran), j.bennett@bham.ac.uk (J. Bennett).

in the classical Littlewood–Paley theory (see for example [36,37,39]). A common role of the square functions is to capture manifestations of orthogonality in L^p spaces for $p \neq 2$. A primordial example is the square function (or g-function)

$$g(f)(x) := \left(\int_{0}^{\infty} \left| \frac{\partial u}{\partial t}(x, t) \right|^{2} t dt \right)^{1/2}, \tag{1}$$

where $u: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}$ denotes the Poisson integral of the function f on \mathbb{R}^d . While Plancherel's theorem quickly reveals that $\|g(f)\|_2 \equiv \|f\|_2$, the key point is that this property essentially persists on L^p – that is, the norms $\|g(f)\|_p$ and $\|f\|_p$ are equivalent for all $1 . Such facts have many important consequences, making square functions a central tool in modern analysis and PDE. In particular, square functions play a striking role in the classical theory of Fourier multipliers. On an abstract level, this approach to multipliers, originating in fundamental work of Stein [36], consists of identifying square functions <math>g_1$ and g_2 for which we have the *pointwise* estimate

$$g_1(T_m f)(x) \lesssim g_2(f)(x); \tag{2}$$

here T_m denotes the convolution operator with Fourier multiplier m.¹ Given such an estimate one may then deduce bounds on T_m from bounds on the square functions g_1 and g_2 . More specifically, if one has

$$||f||_X \lesssim ||g_1(f)||_Y \text{ and } ||g_2(f)||_Y \lesssim ||f||_Z,$$
 (3)

for suitable normed spaces X, Y, Z, then the pointwise estimate (2) quickly reveals that

$$||T_m f||_X \lesssim ||g_1(T_m f)||_Y \lesssim ||g_2(f)||_Y \lesssim ||f||_Z;$$
 (4)

that is, T_m is bounded from Z to X.² The prime example of this approach in action is Stein's celebrated proof of the classical Hörmander–Mikhlin multiplier theorem, which states that if a Fourier multiplier m on \mathbb{R}^d satisfies

$$\sup_{r>0} \|m(r\cdot)\Psi\|_{H^{\sigma}} < \infty \tag{5}$$

for some $\sigma > d/2$, or equivalently

$$\sup_{r>0} r^{\theta} r^{-d/2} \| m\Psi(r^{-1} \cdot) \|_{\dot{H}^{\theta}} < \infty \tag{6}$$

Throughout this paper we shall write $A \lesssim B$ if there exists a constant c such that $A \leq cB$. In particular, this constant will always be independent of the input function f, variable x and weight function w. The relations $A \gtrsim B$ and $A \sim B$ are defined similarly.

Of course this requires that the norm $\|\cdot\|_Y$ is increasing in the sense that $f_1 \lesssim f_2 \Longrightarrow \|f_1\|_Y \lesssim \|f_2\|_Y$.

Download English Version:

https://daneshyari.com/en/article/5778677

Download Persian Version:

https://daneshyari.com/article/5778677

<u>Daneshyari.com</u>