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Through the study of novel variants of the classical
Littlewood—Paley—Stein g-functions, we obtain pointwise esti-
mates for broad classes of highly-singular Fourier multipliers
on R? satisfying regularity hypotheses adapted to fine (sub-
dyadic) scales. In particular, this allows us to efficiently bound
such multipliers by geometrically-defined maximal operators
via general weighted L? inequalities, in the spirit of a well-
known conjecture of Stein. Our framework applies to solution
operators for dispersive PDE, such as the time-dependent free
Schrodinger equation, and other highly oscillatory convolution
operators that fall well beyond the scope of the Calderén—
Zygmund theory.

© 2016 Published by Elsevier Inc.

1. Introduction

A common feature of many themes in both classical and contemporary harmonic anal-

ysis is the pivotal role played by operators which exhibit a certain quadratic structure.

Such operators are usually referred to as square functions, and their study has its roots
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in the classical Littlewood—Paley theory (see for example [36,37,39]). A common role of
the square functions is to capture manifestations of orthogonality in LP spaces for p # 2.
A primordial example is the square function (or g-function)

1/2
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where u : R x R, — R denotes the Poisson integral of the function f on R?. While
Plancherel’s theorem quickly reveals that [|g(f)||2 = ||f|l2, the key point is that this
property essentially persists on LP — that is, the norms ||g(f)|l, and ||f||, are equiva-
lent for all 1 < p < oco. Such facts have many important consequences, making square
functions a central tool in modern analysis and PDE. In particular, square functions
play a striking role in the classical theory of Fourier multipliers. On an abstract level,
this approach to multipliers, originating in fundamental work of Stein [36], consists of
identifying square functions ¢g; and g for which we have the pointwise estimate
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here T}, denotes the convolution operator with Fourier multiplier m.! Given such an
estimate one may then deduce bounds on T, from bounds on the square functions g¢;
and go. More specifically, if one has

Ifllx S llgr(Hlly and g2(H)lly < 112, 3)

for suitable normed spaces X, Y, Z, then the pointwise estimate (2) quickly reveals that

1T fllx S Nlg1(Tn Hlly S llg2(Hlly < N1f1l2; (4)

that is, T}, is bounded from Z to X.? The prime example of this approach in action is
Stein’s celebrated proof of the classical Héormander—-Mikhlin multiplier theorem, which
states that if a Fourier multiplier m on R satisfies

sup [|m(r-) ¥ go < o0 (5)
r>0

for some o > d/2, or equivalently

sup e~ m (1) o < o0 (6)

1 Throughout this paper we shall write A < B if there exists a constant ¢ such that A < ¢B. In particular,
this constant will always be independent of the input function f, variable x and weight function w. The
relations A 2> B and A ~ B are defined similarly.

2 Of course this requires that the norm || - ||y is increasing in the sense that f1 < fo = ||f1lly < ||f2llv-
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