Bernstein-Sato polynomials for maximal minors and sub-maximal Pfaffians

András C. Lőrincz ${ }^{\text {a }}$, Claudiu Raicu ${ }^{\text {b,c,* }}$, Uli Walther ${ }^{\text {a }}$, Jerzy Weyman ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States
${ }^{\text {b }}$ Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States
c Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Romania
${ }^{\text {d }}$ Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States

A R T I C L E I N F O

Article history:

Received 5 April 2016
Received in revised form 9 November 2016
Accepted 14 November 2016
Available online xxxx
Communicated by Michel Van den Bergh
$M S C$:
13D45
14F10
14M12
32C38
32S40

Keywords:
Bernstein-Sato polynomials
b-Functions
Determinantal ideals
Local cohomology

A B S T R A C T

We determine the Bernstein-Sato polynomials for the ideal of maximal minors of a generic $m \times n$ matrix, as well as for that of sub-maximal Pfaffians of a generic skew-symmetric matrix of odd size. As a corollary, we obtain that the Strong Monodromy Conjecture holds in these two cases.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Consider a polynomial ring $S=\mathbb{C}\left[x_{1}, \cdots, x_{N}\right]$ and let $\mathcal{D}=S\left[\partial_{1}, \cdots, \partial_{N}\right]$ denote the associated Weyl algebra of differential operators with polynomial coefficients $\left(\partial_{i}=\frac{\partial}{\partial x_{i}}\right)$. For a non-zero element $f \in S$, the set of polynomials $b(s) \in \mathbb{C}[s]$ for which there exists a differential operator $P_{b} \in \mathcal{D}[s]$ such that

$$
\begin{equation*}
P_{b} \cdot f^{s+1}=b(s) \cdot f^{s} \tag{1.1}
\end{equation*}
$$

form a non-zero ideal. The monic generator of this ideal is called the Bernstein-Sato polynomial (or the b-function) of f, and is denoted $b_{f}(s)$. The b-function gives a measure of the singularities of the scheme defined by $f=0$, and its zeros are closely related to the eigenvalues of the monodromy on the cohomology of the Milnor fiber. In the case of a single hypersurface, its study has originated in [2,23], and later it has been extended to more general schemes in [5] (see Section 2.5). Despite much research, the calculation of b-functions remains notoriously difficult: several algorithms have been implemented to compute b-functions, and a number of examples have been worked out in the literature, but basic instances such as the b-functions for determinantal varieties are still not understood. In [3] and [4], Budur posed as a challenge and reviewed the progress on the problem of computing the b-function of the ideal of $p \times p$ minors of the generic $m \times n$ matrix. We solve the challenge for the case of maximal minors in this paper, and we also find the b-function for the ideal of $2 n \times 2 n$ Pfaffians of the generic skew-symmetric matrix of size $(2 n+1) \times(2 n+1)$. For maximal minors, our main result is as follows:

Theorem on Maximal Minors (Theorem 4.1). Let $m \geq n$ be positive integers, consider the generic $m \times n$ matrix of indeterminates $\left(x_{i j}\right)$, and let $I=I_{n}$ denote the ideal in the polynomial ring $S=\mathbb{C}\left[x_{i j}\right]$ which is generated by the $n \times n$ minors of $\left(x_{i j}\right)$. The b-function of I is given by

$$
b_{I}(s)=\prod_{i=m-n+1}^{m}(s+i)
$$

When $m=n, I$ is generated by a single equation - the determinant of the generic $n \times n$ matrix - and the formula for $b_{I}(s)$ is well-known (see [17, Appendix] or [21, Section 5]). For general $m \geq n$, if we let $Z_{m, n}$ denote the zero locus of I, i.e. the variety of $m \times n$ matrices of rank at most $n-1$, then using the renormalization (2.28) our theorem states that the b-function of $Z_{m, n}$ is $\prod_{i=0}^{n-1}(s+i)$. It is interesting to note that this only depends on the value of n and not on m.

The statement of the Strong Monodromy Conjecture of Denef and Loeser [9] extends naturally from the case of one hypersurface to arbitrary ideals, and it asserts that the poles of the topological zeta function of I are roots of $b_{I}(s)$. We verify this conjecture for maximal minors and sub-maximal Pfaffians in Section 5. When $I=I_{n}$ is the ideal of

https://daneshyari.com/en/article/5778680

Download Persian Version:

https://daneshyari.com/article/5778680

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: alorincz@purdue.edu (A.C. Lőrincz), craicu@nd.edu (C. Raicu), walther@math.purdue.edu (U. Walther), jerzy.weyman@uconn.edu (J. Weyman).

