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The main result of the present paper is a complete solution

Keywords: to this problem.

Baire class 1 We prove that a linear order is isomorphic to a linearly ordered
Linearly family of Baire class 1 functions iff it is isomorphic to a subset
Partially ordered set of the following linear order that we call ([0, I]i“{)‘ s <altlex)s
Polish space

where [0, l]i‘f)l is the set of strictly decreasing transfinite

Universal

Laczkovich’s Problem sequences of reals in [0, 1] with last element 0, and <gites,

Completion the so called alternating lexicographical ordering, is defined

Product as follows: if (Za)a<e, (Th)a<e € [0, l]i“‘él are distinct, and ¢

Lexicographical is the minimal ordinal where the two sequences differ then we
say that
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(Ta)a<e <altiez (Th)a<e <= (d is even and x5 < xf) or
(6 is odd and x5 > xf).

Using this characterization we easily reprove all the known
results and answer all the known open questions of the topic.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let F(X) be a class of real valued functions defined on a Polish space X, e.g. C(X),
the set of continuous functions. The natural partial ordering on this space is the pointwise
ordering <, that is, we say that f <, g if for every x € X we have f(z) < g(x) and
there exists at least one x such that f(z) < g(z). If we would like to understand the
structure of this partially ordered set (poset), the first step is to describe its linearly
ordered subsets.

For example, if X = [0, 1] and F(X) = C(]0, 1]) then it is a well known result that the
possible order types of the linearly ordered subsets of C([0,1]) are the real order types
(that is, the order types of the subsets of the reals). Indeed, a real order type is clearly
representable by constant functions, and if £ C C([0,1]) is a linearly ordered family of
continuous functions then (by continuity) f — fol f is a strictly monotone map of £ into
the reals.

The next natural class to look at is the class of Lebesgue measurable functions. How-
ever, it is not hard to check that the assumption of measurability is rather meaningless
here. Indeed, if £ is a linearly ordered family of arbitrary real functions and ¢ : R — R
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