Advances in Mathematics 307 (2017) 754–779

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A local theory for operator tuples in the Cowen–Douglas class

MATHEMATICS

霐

Li Chen^{a,*}, Ronald G. Douglas^b

^a School of Mathematics, Shandong University, Jinan 250100, China
^b Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

ARTICLE INFO

Article history: Received 21 March 2016 Received in revised form 13 October 2016 Accepted 21 November 2016 Available online 30 November 2016 Communicated by Dan Voiculescu

MSC: 46E22 47A65 32Axx 55Rxx

Keywords: Cowen–Douglas operator Localization Quotient module Curvature

ABSTRACT

We present a local theory for a commuting *m*-tuple $\mathbf{S} = (S_1, S_2, \cdots, S_m)$ of Hilbert space operators lying in the Cowen–Douglas class. By representing \mathbf{S} on a Hilbert module \mathcal{M} consisting of vector-valued holomorphic functions over \mathbb{C}^m , we identify and study the localization of \mathbf{S} on an analytic hyper-surface in \mathbb{C}^m . We completely determine unitary equivalence of the localization and relate it to geometric invariants of the Hermitian holomorphic vector bundle associated to \mathbf{S} . It turns out that the localization coincides with an important class of quotient Hilbert modules, and our result concludes its classification problem in full generality.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: lichen1019@gmail.com (L. Chen), rdouglas@math.tamu.edu (R.G. Douglas).

1. Introduction

Coordinate multiplications on a holomorphic function space of several complex variables provide a basic model in multivariate operator theory. For fixed positive integers m and n, let \mathcal{M} be a Hilbert space consisting of \mathbb{C}^n -valued holomorphic functions over a connected bounded open subset Ω in \mathbb{C}^m such that for any $1 \leq i \leq m$, the operator

$$T_i: f \mapsto z_i f, f \in \mathcal{M}$$

of multiplication by the i^{th} coordinate function z_i is bounded on \mathcal{M} . We assume the following standard properties of \mathcal{M} throughout this paper:

(a) For any $\mathbf{z} = (z_1, \cdots, z_m) \in \Omega$, the evaluation map $e_{\mathbf{z}} \colon f \mapsto f(\mathbf{z}), f \in \mathcal{M}$, is bounded from \mathcal{M} onto \mathbb{C}^n ,

(b) \mathcal{M} has the Gleason property, i.e., for any $\mathbf{z} \in \Omega$ and $f \in \mathcal{M}$, $f(\mathbf{z}) = \mathbf{0}$ if and only if $f = (T_1 - z_1)f_1 + \cdots + (T_m - z_m)f_m$ for some f_1, \cdots, f_m in \mathcal{M} .

In the scalar case n = 1, examples include well-studied function spaces such as the Hardy or Bergman spaces over the unit ball or polydisc in \mathbb{C}^m , and trivial vector-valued example can be obtained by taking the direct sum of *n*-copies of a scalar one. In general, the structure of a vector-valued function space can be quite complicated, and one can view \mathcal{M} as a *Hilbert module* ([8]) in the sense that \mathcal{M} as a Hilbert space admits a natural module structure over the polynomial ring $\mathbb{C}[z_1, \dots, z_m]$ with respect to the obvious multiplication action.

A basic problem in operator theory is to determine when two operators or operator tuples are unitarily equivalent. In this paper we will investigate the problem for the *m*-tuple (T_1, \dots, T_m) from a local perspective, which is motivated by the seminal work of Cowen and the second author [3] on a complex geometric approach to operator theory, as well as some recent developments on classification of Hilbert modules.

Definition 1. Given a positive integer n and a bounded domain Ω in \mathbb{C}^m , a commuting m-tuple of operators $\mathbf{S} = (S_1, \dots, S_m)$ acting on a Hilbert space H belongs to the Cowen–Douglas class, denoted by $\mathcal{B}_n^m(\Omega)$, if the following holds:

(i) The space $\{((S_1-z_1)h, \cdots, (S_m-z_m)h), h \in H\}$ is a closed subspace in $H \oplus \cdots \oplus H$ (*m* copies of *H*) for every $\mathbf{z} = (z_1, \cdots, z_m) \in \Omega$;

(ii) $\forall_{\mathbf{z}\in\Omega} \cap_{i=1}^{m} \ker(S_i - z_i) = H$ (here \lor denotes the closed linear span); and

(iii) dim $\cap_{i=1}^{m} \ker(S_i - z_i) = n$ for every $\mathbf{z} \in \Omega$.

The $\mathcal{B}_n^1(\Omega)$ class was originally introduced in [3] for a single operator. Curto and Salinas [5] extended it to operator tuples and showed that the $\mathcal{B}_n^m(\Omega)$ class can actually be modeled by adjoints of coordinate multiplication on a Hilbert module as we just mentioned in the beginning. Download English Version:

https://daneshyari.com/en/article/5778694

Download Persian Version:

https://daneshyari.com/article/5778694

Daneshyari.com