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I prove that if ∅ �= K ⊂ R
2 is a compact s-Ahlfors–David 

regular set with s ≥ 1, then

dimp D(K) = 1,

where D(K) := {|x − y| : x, y ∈ K} is the distance set of K, 
and dimp stands for packing dimension.
The same proof strategy applies to other problems of similar 
nature. For instance, one can show that if ∅ �= K ⊂ R

2 is a 
compact s-Ahlfors–David regular set with s ≥ 1, then there 
exists a point x0 ∈ K such that dimp K · (K − x0) = 1.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Given a planar set K, the distance set problem asks for a relationship between the 
size of K, and the size of the distance set

D(K) := {|x− y| : x, y ∈ K}.
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For finite sets K, the problem is due to P. Erdős from 1946, and the Erdős distance 
conjecture states that the cardinality of D(K) should satisfy |D(K)| � |P |/

√
log |P |. 

L. Guth and N. Katz [7] nearly resolved the question in 2011 by showing that |D(K)| �
|P |/ log |P |.

The “continuous” version of the distance set problem was proposed by K. Falconer 
[4] in 1985. The Falconer distance conjecture claims that if K ⊂ R

2 is a Borel set with 
dimK > 1, then D(K) has positive length. As far as I know, the current records for 
general sets in this setting are the following theorems of T. Wolff [13] from 1999 and 
J. Bourgain [3] from 2003:

Theorem 1.1 (Wolff). If K ⊂ R
2 is Borel with dimK > 4/3, then D(K) has positive 

length.

Theorem 1.2 (Bourgain). If K ⊂ R
2 is Borel with dimK ≥ 1, then dimH D(K) ≥ 1/2 +ε

for some (small) absolute constant ε > 0.

In Bourgain’s result, dimH stands for Hausdorff dimension. Recent years have witnessed 
considerable interest in trying to prove Falconer’s conjecture – or at least improve sig-
nificantly upon Theorems 1.1 and 1.2 – for special classes of sets. Bárány [1] and the 
author [12] considered self-similar sets in R2 and R3. Ferguson, Fraser and Sahlsten [5]
studied some classes of self-affine sets in the plane. Most recently, Fraser and Pollicott [6]
investigated planar self-conformal sets. I will not state the precise contributions of these 
papers individually, but each contains a result of the following kind: if K is a set in the 
special class under consideration, with positive linear measure, then dimH D(K) = 1. 
For planar self-similar sets K, Bárány’s result [1] is even stronger: dimH K = 1 already 
implies dimH D(K) = 1. In the present paper, I consider the class of Ahlfors–David 
regular sets, and the main result is the following:

Theorem 1.3. Assume that ∅ �= K ⊂ R
2 is a compact s-Ahlfors–David-regular set with 

s ≥ 1. Then

dimp D(K) = 1,

where dimp stands for packing dimension, see Definition 1.6 below.

The precise definition of Ahlfors–David regular sets is Definition 1.7 below; for in-
stance, self-similar sets satisfying the open set condition are Ahlfors–David regular. 
However, as the following construction shows, Ahlfors–David regular sets are not, in 
general, associated with an obvious dynamical system:

Example 1.4. Fix two integers 0 < m ≤ n2 and let Q0 := {[0, 1]2}. Next, assume that 
j ≥ 0, and Qj is a collection of interior-disjoint closed squares of side-length n−j. Fix 
Q ∈ Qj . Divide Q into n2 closed squares of side-length n−j−1, specify (any) m of them, 
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