On the Andrews-Zagier asymptotics for partitions without sequences

Kathrin Bringmann ${ }^{\text {a,** }}$, Ben Kane ${ }^{\text {b,* }}$, Daniel Parry ${ }^{\text {a }}$, Robert Rhoades ${ }^{\text {c }}$
a Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
b Department of Mathematics, University of Hong Kong, Pokfulam, Hong Kong
c Center for Communications Research, 805 Bunn Dr., Princeton, NJ $08540, U S A$

A R T I C L E I N F O

Article history:

Received 7 September 2015
Received in revised form 3 January 2017
Accepted 17 January 2017
Communicated by George E.
Andrews
Keywords:
Andrews-Zagier asymptotics
Hypergeometric series
Wright functions

Abstract

In this paper, we establish asymptotics of radial limits for certain functions of Wright. These functions appear in bootstrap percolation and the generating function for partitions without sequences of k consecutive part sizes. We specifically establish asymptotics numerically obtained by Zagier in the case $k=3$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Holroyd, Liggett, and Romik [8] introduced the following probability models: Let $0<s<1$ and $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots$ be independent events with probabilities

[^0]$$
\mathbf{P}_{s}\left(\mathcal{C}_{n}\right):=1-e^{-n s}
$$
under a certain probability measure \mathbf{P}_{s}. Let A_{k} be the event
$$
A_{k}:=\bigcap_{j=1}^{\infty}\left(\mathcal{C}_{j} \cup \mathcal{C}_{j+1} \cup \cdots \cup \mathcal{C}_{j+k-1}\right)
$$
that there is no sequence of k consecutive \mathcal{C}_{j} that do not occur. With $q:=e^{-s}$ throughout the remainder of the paper, set
$$
g_{k}(q):=\mathbf{P}_{s}\left(A_{k}\right)
$$

To solve a problem in bootstrap percolation, Holroyd, Liggett, and Romik established an asymptotic for $\log \left(g_{k}\left(e^{-s}\right)\right)$.

Interestingly, the above described probability model also appears in the study of integer partitions $[4,8]$. In particular,

$$
G_{k}(q)=g_{k}(q) \prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

is the generating function for the number of integer partitions without k consecutive part sizes. Partitions without 2 consecutive parts have a celebrated history in relation to the famous Rogers-Ramanujan identities. See MacMahon's book [10] or the works of Andrews [1-3] for more about such partitions.

Andrews [3] found that the key to understanding the function if $k=2$ lies in Ramanujan's mock theta function

$$
\chi(q):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{\prod_{j=1}^{n}\left(1-q^{j}+q^{2 j}\right)} .
$$

Namely, he proved that

$$
g_{2}(q)=\chi(q) \prod_{n=1}^{\infty} \frac{\left(1+q^{3 n}\right)}{\left(1-q^{n}\right)\left(1-q^{2 n}\right)}
$$

From this, an asymptotic expansion for $g_{2}\left(e^{-s}\right)$ may be obtained (see [5]). Using additional q-series identities if $k>2$, Andrews made the following conjecture.

Conjecture 1.1 (Andrews [3]). For each $k \geq 2$, there exists a positive constant C_{k} such that, as $s \rightarrow 0$,

$$
g_{k}\left(e^{-s}\right) \sim C_{k} s^{-\frac{1}{2}} \exp \left(-\frac{\pi^{2}}{3 k(k+1) s}\right)
$$

https://daneshyari.com/en/article/5778724

Download Persian Version:
https://daneshyari.com/article/5778724

Daneshyari.com

[^0]: * Corresponding authors.

 E-mail addresses: kbringma@math.uni-koeln.de (K. Bringmann), bkane@hku.hk (B. Kane), dan.t.parry@gmail.com (D. Parry), rob.rhoades@gmail.com (R. Rhoades).

