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Abstract. In the paper, the authors analytically find some explicit formulas and recursive
formulas for the large and little Schröder numbers.
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1. INTRODUCTION

In combinatorics and number theory, there are two kinds of Schröder numbers, the large
Schröder numbers Sn and the little Schröder numbers sn. They are named after the German
mathematician Ernst Schröder.

A large Schröder number Sn describes the number of paths from the southwest corner
(0, 0) of an n×n grid to the northeast corner (n, n), using only single steps north, northeast, or
east, that do not rise above the southwest–northeast diagonal. The first eleven large Schröder
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numbers Sn for 0 ≤ n ≤ 10 are

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718.

In [1, Theorem 8.5.7], it was proved that the large Schröder numbers Sn have the generating
function

G(x) =
1 − x −

√
x2 − 6x + 1
2x

=
∞

n=0

Snxn, (1)

which can also be rearranged as

G(x) = G(−x) =
√

x2 + 6x + 1 − 1 − x

2x
=

∞
n=0

(−1)nSnxn. (2)

The little Schröder numbers sn form an integer sequence that can be used to count the
number of plane trees with a given set of leaves, the number of ways of inserting parentheses
into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons
by inserting diagonals. The first eleven little Schröder numbers sn for 1 ≤ n ≤ 11 are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859.

They are also called the small Schröder numbers, the Schröder–Hipparchus numbers, or the
Schröder numbers, after Ernst Schröder and the ancient Greek mathematician Hipparchus
who appears from evidence in Plutarch to have known of these numbers. They are also called
the super-Catalan numbers, after Eugéne Charles Catalan, but different from a generalization
of the Catalan numbers [2,10]. In [1, Theorem 8.5.6], it was proved that the little Schröder
numbers sn have the generating function

g(x) =
1 + x −

√
x2 − 6x + 1
4

=
∞

n=1

snxn. (3)

For more information on the large Schröder numbers Sn and the little Schröder numbers sn,
please refer to [1,7–9] and plenty of references therein.

Comparing (1) with (3), we can reveal
x2 − 6x + 1 = 1 + x − 4

∞
n=1

snxn = 1 − x − 2
∞

n=0

Snxn+1,

that is,

1 − 2
∞

n=1

snxn−1 = 1 − 2
∞

n=0

sn+1x
n = −

∞
n=0

Snxn.

Accordingly, we acquire

Sn = 2sn+1, n ∈ N. (4)

See also [1, Corollary 8.5.8]. This relation tells us that it is sufficient to analytically study the
large Schröder numbers Sn.

Recently, in the paper [3] and the preprints [4–6], some new conclusions, including
several explicit formulas, integral representations, and some properties such as the convexity,
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