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Abstract. In the paper, the authors analytically find some explicit formulas and recursive
formulas for the large and little Schroder numbers.
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1. INTRODUCTION

In combinatorics and number theory, there are two kinds of Schrdoder numbers, the large
Schréder numbers S,, and the little Schroder numbers s,,. They are named after the German
mathematician Ernst Schroder.

A large Schroder number S;, describes the number of paths from the southwest corner
(0,0) of an nxn grid to the northeast corner (n, n), using only single steps north, northeast, or
east, that do not rise above the southwest—northeast diagonal. The first eleven large Schroder
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numbers S,, for 0 < n < 10 are
1, 2, 6, 22, 90, 394, 1806, &558, 41586, 206098, 1037718.

In [1, Theorem 8.5.7], it was proved that the large Schroder numbers .S,, have the generating
function
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which can also be rearranged as
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The little Schroder numbers s,, form an integer sequence that can be used to count the
number of plane trees with a given set of leaves, the number of ways of inserting parentheses
into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons
by inserting diagonals. The first eleven little Schroder numbers s,, for1 < n < 11 are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859.

They are also called the small Schroder numbers, the Schroder—Hipparchus numbers, or the
Schroder numbers, after Ernst Schroder and the ancient Greek mathematician Hipparchus
who appears from evidence in Plutarch to have known of these numbers. They are also called
the super-Catalan numbers, after Eugéne Charles Catalan, but different from a generalization
of the Catalan numbers [2,10]. In [I, Theorem 8.5.6], it was proved that the little Schroder
numbers s, have the generating function
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For more information on the large Schroder numbers S, and the little Schréder numbers s,,,
please refer to [1,7-9] and plenty of references therein.
Comparing (1) with (3), we can reveal
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that is,
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Accordingly, we acquire
Sn =28,41, neN “4)

See also [, Corollary 8.5.8]. This relation tells us that it is sufficient to analytically study the
large Schroder numbers .S, .

Recently, in the paper [3] and the preprints [4—6], some new conclusions, including
several explicit formulas, integral representations, and some properties such as the convexity,
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