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Abstract

This paper studies the limit behaviour of sums of the form

T (x) = Z oy (), (= 1,2, ..)

I<j<n

where (cj(x));>1 is the sequence of partial quotients in the regular continued fraction expansion of the
real number x and (kj);> is a strictly increasing sequence of natural numbers. Of particular interest
is the case where for irrational o, the sequence (kj«);>; is uniformly distributed modulo one and
(kj)j>1 is good universal. It was observed by the second author, for this class of sequences (k;);>1
that we have limnﬁw@ = +oo almost everywhere with respect to Lebesgue measure. The case
kj =j(j=1,2,...)is classical and due to A. Ya. Khinchin. Building on work of H. Diamond, Khinchin,
W. Philipp, L. Heinrich, J. Vaaler and others, in the special case where k =17 (j=1,2,...,) we examine
the asymptotic behaviour of the sequence (7 (x)),>1 in more detail.
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1. Introduction

LetN = {1, 2, ...} denote the set of natural numbers. For x € (0, 1), letx = [¢1(x), c2(x), .. .]
denote its regular continued fraction expansion. Recall that we say a sequence (x,),>; 1S
uniformly distributed modulo one if for each interval I < [0, 1) of length |/| we have

1
lim N#{ISnSN:xnel}zm.

N—oo
Here for a finite set F we have used #F to denote its cardinality. Let (X, B, ) be a probability
space and let 7 : X — X be a measurable map, that is also measure-preserving. That is, given
A € B, we have u(T~'A) = u(A), where T7'A denotes the set {x € X : Tx € A}. We
call (X, B, u, T) a dynamical system. We say a dynamical system (X, B, u, T) is ergodic if
T~'A = A for A € B means that either u(A) or (X \ A) is 0. We say (ky)n>0 is L? good
universal if for each dynamical system (X, B, u, T') and for each f € L?(X, B, u) the limit

N—1
1 1 kn
lrp(x) = lim — ZO F(Th),
exists p almost everywhere.
For a real number y let [y] denote the largest integer not greater than y. Also let {y} denote
the fractional part of y i.e. y — [y]. We call

1 .
G(x) = {;}, ifx € (0, 1)
0 ifx=0

the Gauss map. Let p; denote Lebesgue measure on [0, 1). Set

1 dx
pa(A) = f A
log2 Jo 14+x

for a p; -measurable set A. We call pg the Gauss measure.
Let M denote the Lebesgue o - algebra on [0, 1). Applying good universality to the dynamical
system ([0, 1), M, pg, G), using the fact that

1
ci(x) = [;} o () =a(G), (k=1,2,..)

for irrational x in [14], developing ideas in [6] and [19], the following is proved.
Suppose that the function F : R>¢ — R is continuous and increasing and that for some p > 1
we have

/1 |F(C1(x))|pd

————dx < 0.

0 X+ 1

Suppose (i) for each irrational o that ({kjo})j>; is uniformly distributed modulo one, and
(ii) that (k;)> is L? good universal. For a finite set of non-negative real numbers {a, ..., a,}
we let

My (a, ... a):Fl[F(al)'f‘"'-i-F(a,,)jI.

n
It is shown in [14] that

1 ['F
Tim Mp(ci(x), ... ca(x) = F~! [logZ/o ;Cfi))dx}
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