Limit theorems for sub-sums of partial quotients of continued fractions

Liangang Ma ${ }^{\mathrm{a}}$, Radhakrishnan Nair ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Binzhou University, Huanghe 5 road No. 391, City of Binzhou, Shandong Province, PR China
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, The University of Liverpool, Peach Street, Liverpool L69 7ZL, United Kingdom

Received 21 August 2016; received in revised form 13 May 2017; accepted 9 June 2017

Communicated by H.W. Broer

Abstract

This paper studies the limit behaviour of sums of the form $$
T_{n}(x)=\sum_{1 \leq j \leq n} c_{k_{j}}(x),(n=1,2, \ldots)
$$ where $\left(c_{j}(x)\right)_{j \geq 1}$ is the sequence of partial quotients in the regular continued fraction expansion of the real number x and $\left(k_{j}\right)_{j \geq 1}$ is a strictly increasing sequence of natural numbers. Of particular interest is the case where for irrational α, the sequence $\left(k_{j} \alpha\right)_{j \geq 1}$ is uniformly distributed modulo one and $\left(k_{j}\right)_{j \geq 1}$ is good universal. It was observed by the second author, for this class of sequences $\left(k_{j}\right)_{j \geq 1}$ that we have $\lim _{n \rightarrow \infty} \frac{T_{n}(x)}{n}=+\infty$ almost everywhere with respect to Lebesgue measure. The case $k_{j}=j(j=1,2, \ldots)$ is classical and due to A. Ya. Khinchin. Building on work of H. Diamond, Khinchin, W. Philipp, L. Heinrich, J. Vaaler and others, in the special case where $k_{j}=j(j=1,2, \ldots$,$) we examine$ the asymptotic behaviour of the sequence $\left(T_{n}(x)\right)_{n \geq 1}$ in more detail. © 2017 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Keywords: Partial quotients; Distribution functions; Mixing

[^0]
1. Introduction

Let $\mathbb{N}=\{1,2, \ldots\}$ denote the set of natural numbers. For $x \in(0,1)$, let $x=\left[c_{1}(x), c_{2}(x), \ldots\right]$ denote its regular continued fraction expansion. Recall that we say a sequence $\left(x_{n}\right)_{n \geq 1}$ is uniformly distributed modulo one if for each interval $I \subseteq[0,1)$ of length $|I|$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N: x_{n} \in I\right\}=|I| .
$$

Here for a finite set F we have used $\# F$ to denote its cardinality. Let (X, \mathcal{B}, μ) be a probability space and let $T: X \rightarrow X$ be a measurable map, that is also measure-preserving. That is, given $A \in \mathcal{B}$, we have $\mu\left(T^{-1} A\right)=\mu(A)$, where $T^{-1} A$ denotes the set $\{x \in X: T x \in A\}$. We call (X, \mathcal{B}, μ, T) a dynamical system. We say a dynamical system (X, \mathcal{B}, μ, T) is ergodic if $T^{-1} A=A$ for $A \in \mathcal{B}$ means that either $\mu(A)$ or $\mu(X \backslash A)$ is 0 . We say $\left(k_{n}\right)_{n \geq 0}$ is L^{p} good universal if for each dynamical system (X, \mathcal{B}, μ, T) and for each $f \in L^{p}(X, \mathcal{B}, \mu)$ the limit

$$
\ell_{T, f}(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{k_{n}} x\right)
$$

exists μ almost everywhere.
For a real number y let $[y]$ denote the largest integer not greater than y. Also let $\{y\}$ denote the fractional part of y i.e. $y-[y]$. We call

$$
G(x)= \begin{cases}\left\{\frac{1}{x}\right\}, & \text { if } x \in(0,1) \\ 0 & \text { if } x=0\end{cases}
$$

the Gauss map. Let ρ_{L} denote Lebesgue measure on $[0,1)$. Set

$$
\rho_{G}(A)=\frac{1}{\log 2} \int_{A} \frac{d x}{1+x}
$$

for a ρ_{L}-measurable set A. We call ρ_{G} the Gauss measure.
Let \mathcal{M} denote the Lebesgue σ - algebra on $[0,1)$. Applying good universality to the dynamical system $\left([0,1), \mathcal{M}, \rho_{G}, G\right)$, using the fact that

$$
c_{1}(x)=\left[\frac{1}{x}\right], \quad c_{k+1}(x)=c_{k}(G(x)), \quad(k=1,2, \ldots)
$$

for irrational x in [14], developing ideas in [6] and [19], the following is proved.
Suppose that the function $F: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ is continuous and increasing and that for some $p \geq 1$ we have

$$
\int_{0}^{1} \frac{\left|F\left(c_{1}(x)\right)\right|^{p}}{x+1} d x<\infty
$$

Suppose (i) for each irrational α that $\left(\left\{k_{j} \alpha\right\}\right)_{j \geq 1}$ is uniformly distributed modulo one, and (ii) that $\left(k_{j}\right)_{\geq 1}$ is L^{p} good universal. For a finite set of non-negative real numbers $\left\{a_{1}, \ldots, a_{n}\right\}$ we let

$$
M_{F, n}\left(a_{1}, \ldots, a_{n}\right)=F^{-1}\left[\frac{F\left(a_{1}\right)+\cdots+F\left(a_{n}\right)}{n}\right] .
$$

It is shown in [14] that

$$
\lim _{n \rightarrow \infty} M_{F, n}\left(c_{1}(x), \ldots, c_{n}(x)\right)=F^{-1}\left[\frac{1}{\log 2} \int_{0}^{1} \frac{F\left(c_{1}(x)\right)}{x+1} d x\right]
$$

https://daneshyari.com/en/article/5778838

Download Persian Version:
https://daneshyari.com/article/5778838

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: maliangang000@163.com (L. Ma), nair@liverpool.ac.uk (R. Nair).

