An elementary representation of the higher-order Jacobi-type differential equation

Clemens Markett
Lehrstuhl A für Mathematik, RWTH Aachen, Templergraben 55, D-52062 Aachen, Germany
Received 19 September 2016; received in revised form 22 June 2017; accepted 30 June 2017
Communicated by: T.H. Koornwinder

Abstract

We investigate the differential equation for the Jacobi-type polynomials which are orthogonal on the interval $[-1,1]$ with respect to the classical Jacobi measure and an additional point mass at one endpoint. This scale of higher-order equations was introduced by J. and R. Koekoek in 1999 essentially by using special function methods. In this paper, a completely elementary representation of the Jacobi-type differential operator of any even order is given. This enables us to trace the orthogonality relation of the Jacobi-type polynomials back to their differential equation. Moreover, we establish a new factorization of the Jacobi-type operator into a product of linear second-order operators, which gives rise to a recurrence relation with respect to the order of the equation. Finally, two interrelations with the differential equation for the symmetric ultraspherical-type polynomials are pointed out.

© 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: orthogonal polynomials; Higher-order linear differential equations; Jacobi-type equations; Jacobi-type polynomials; Factorization

1. Introduction and main result

In 1999, J. and R. Koekoek [6] established a new class of higher-order linear differential equations satisfied by the generalized Jacobi polynomials $\left\{P_{n}^{\alpha, \beta, M, N}(x)\right\}_{n=0}^{\infty}, \alpha, \beta>$ $-1, M, N \geq 0$. These function systems were introduced and studied by T. H. Koornwinder [8] as the orthogonal polynomials with respect to a linear combination of the Jacobi weight function

[^0]$w_{\alpha, \beta}$ and one or two delta functions at the endpoints of the interval $-1 \leq x \leq 1$,
\[

$$
\begin{align*}
& w_{\alpha, \beta, M, N}(x)=w_{\alpha, \beta}(x)+M \delta(x+1)+N \delta(x-1) \\
& w_{\alpha, \beta}(x)=h_{\alpha, \beta}^{-1}(1-x)^{\alpha}(1+x)^{\beta} \\
& h_{\alpha, \beta}=\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} d x=2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1) / \Gamma(\alpha+\beta+2) \tag{1.1}
\end{align*}
$$
\]

In the present paper we investigate the so-called Jacobi-type equation with one additional mass point in the weight function, i.e. with either M or N being positive. Recently, we extended the main result to the most general case that M and N are both nonzero, see [14]. In terms of the classical Jacobi polynomials [3, Sec. 10.8]

$$
\begin{equation*}
P_{n}^{\alpha, \beta}(x)=\frac{(\alpha+1)_{n}}{n!} F_{2}\left(-n, n+\alpha+\beta+1 ; \alpha+1 ; \frac{1-x}{2}\right) \tag{1.2}
\end{equation*}
$$

for $n \in \mathbb{N}_{0}=\{0,1, \ldots\}$, the Jacobi-type polynomials are given by, cf. [6, (56), (58)] together with [3, 10.8(17)],

$$
\begin{equation*}
P_{n}^{\alpha, \beta, M, N}(x)=P_{n}^{\alpha, \beta}(x)+M Q_{n}^{\alpha, \beta}(x)+N R_{n}^{\alpha, \beta}(x), n \in \mathbb{N}_{0}, M \cdot N=0 \tag{1.3}
\end{equation*}
$$

where, with $A_{n}^{\alpha, \beta}=(\alpha+2)_{n-1}(\alpha+\beta+2)_{n} /\left[2 n!(\beta+1)_{n-1}\right]$,

$$
\begin{align*}
& Q_{n}^{\alpha, \beta}(x)=A_{n}^{\beta, \alpha}(x+1) P_{n-1}^{\alpha, \beta+2}(x), n \in \mathbb{N}, Q_{0}^{\alpha, \beta}(x)=0 \tag{1.4}\\
& R_{n}^{\alpha, \beta}(x)=A_{n}^{\alpha, \beta}(x-1) P_{n-1}^{\alpha+2, \beta}(x), n \in \mathbb{N}, R_{0}^{\alpha, \beta}(x)=0 \tag{1.5}
\end{align*}
$$

By means of the well-known relationship $P_{n}^{\alpha, \beta}(x)=(-1)^{n} P_{n}^{\beta, \alpha}(-x)$, it follows that, [8, (2.5)], [6, (52)],

$$
\begin{equation*}
Q_{n}^{\alpha, \beta}(x)=(-1)^{n} R_{n}^{\beta, \alpha}(-x), P_{n}^{\alpha, \beta, M, 0}(x)=(-1)^{n} P_{n}^{\beta, \alpha, 0, M}(-x), n \in \mathbb{N}_{0}, M>0 \tag{1.6}
\end{equation*}
$$

Hence it suffices to treat, for instance, the case $M=0, N>0$ in full detail. The corresponding results for $M>0, N=0$ then follow immediately.

For $\alpha \in \mathbb{N}_{0}$ and any $\beta>-1, N>0$, J. and R. Koekoek [6, Sec. 2] found that the Jacobi-type polynomials $\left\{P_{n}^{\alpha, \beta, 0, N}(x)\right\}_{n=0}^{\infty}$ satisfy a linear differential equation of order $2 \alpha+4$ which, for our purpose, is conveniently described in the form

$$
\begin{equation*}
N\left\{L_{2 \alpha+4, x}^{\alpha, \beta}-\Lambda_{2 \alpha+4, n}^{\alpha, \beta}\right\} y(x)+C_{\alpha, \beta}\left\{L_{2, x}^{\alpha, \beta}-\Lambda_{2, n}^{\alpha, \beta}\right\} y(x)=0,-1<x<1 . \tag{1.7}
\end{equation*}
$$

Here, the eigenvalue parameters and the coupling constant read

$$
\begin{align*}
\Lambda_{2 \alpha+4, n}^{\alpha, \beta} & =(n)_{\alpha+2}(n+\beta)_{\alpha+2}, \quad \Lambda_{2, n}^{\alpha, \beta}=n(n+\alpha+\beta+1), \tag{1.8}\\
C_{\alpha, \beta} & =(\alpha+2)!(\beta+1)_{\alpha+1} .
\end{align*}
$$

In particular, when N tends to zero, Eq. (1.7) reduces to the classical equation for the Jacobi polynomials, $L_{2, x}^{\alpha, \beta} P_{n}^{\alpha, \beta}(x)=\Lambda_{2, n}^{\alpha, \beta} P_{n}^{\alpha, \beta}(x), n \in \mathbb{N}_{0}$, where

$$
\begin{align*}
L_{2, x}^{\alpha, \beta} y(x) & =\left\{\left(x^{2}-1\right) D_{x}^{2}+[\alpha-\beta+(\alpha+\beta+2) x] D_{x}\right\} y(x) \tag{1.9}\\
& =(x-1)^{-\alpha}(x+1)^{-\beta} D_{x}\left[(x-1)^{\alpha+1}(x+1)^{\beta+1} D_{x} y(x)\right] .
\end{align*}
$$

Throughout this paper, $D_{x}^{i} \equiv\left(D_{x}\right)^{i}$ denotes the i-fold differentiation with respect to x. The crucial part of Eq. (1.7) was to determine the coefficient functions in the higher-order differential expression

$$
\begin{equation*}
L_{2 \alpha+4, x}^{\alpha, \beta} y(x)=\sum_{i=1}^{2 \alpha+4} d_{i}^{\alpha, \beta}(x) D_{x}^{i} y(x) \tag{1.10}
\end{equation*}
$$

[^1]
https://daneshyari.com/en/article/5778843

Download Persian Version:

https://daneshyari.com/article/5778843

Daneshyari.com

[^0]: E-mail address: markett@matha.rwth-aachen.de.

[^1]: Please cite this article in press as: C. Markett, An elementary representation of the higher-order Jacobi-type differential equation, Indagationes Mathematicae (2017), http://dx.doi.org/10.1016/j.indag.2017.06.015.

