

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 28 (2017) 796-804

www.elsevier.com/locate/indag

Fibonacci factoriangular numbers

Carlos Alexis Gómez Ruiz^{a,*}, Florian Luca^{b,c}

^a Departamento de Matemáticas, Universidad del Valle, 25360 Cali, Calle 13 No 100-00, Colombia ^b School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa ^c Department of Mathematics, Faculty of Sciences, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic

Received 4 August 2016; received in revised form 13 March 2017; accepted 12 May 2017

Communicated by F. Beukers

Abstract

Let $(F_m)_{m\geq 0}$ be the Fibonacci sequence given by $F_0 = 0$, $F_1 = 1$ and $F_{m+2} = F_{m+1} + F_m$, for all $m \geq 0$. In Castillo (2015), it is conjectured that 2, 5 and 34 are the only Fibonacci numbers of the form $n! + \frac{n(n+1)}{2}$, for some positive integer *n*. In this paper, we confirm the above conjecture. (© 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Fibonacci numbers; Factoriangular numbers; p-adic linear forms in logarithms of algebraic numbers

1. Introduction

The Fibonacci sequence $(F_m)_{m>0}$ is given by $F_0 = 0$, $F_1 = 1$ and

 $F_{m+2} = F_{m+1} + F_m$ for all $m \ge 0$.

The few terms of the Fibonacci sequence are

 $F := \{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \ldots\}.$

Ljunggren [5] showed that the only squares in the Fibonacci sequence are 0, 1 and 144. This was rediscovered by Cohn [4] and Wyler [16]. London and Finkelstein [6] and Pethő [10] proved that the only cubes in the Fibonacci sequence are 0, 1 and 8. Bugeaud, Mignotte and Siksek [2]

* Corresponding author.

http://dx.doi.org/10.1016/j.indag.2017.05.002

E-mail addresses: carlos.a.gomez@correounivalle.edu.co (C.A. Gómez Ruiz), florian.luca@wits.ac.za (F. Luca).

^{0019-3577/© 2017} Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

showed that the only perfect powers (of exponent larger than 1) in the Fibonacci sequence are 0, 1, 8 and 144. There are several other papers which study Diophantine equations arising from representing Fibonacci numbers by other quadratic and cubic polynomials such as $F_n = k^2 + k + 2$ (see [7]); $F_n = x^2 - 1$ or $F_n = x^3 \pm 1$ (see [11]); $F_n = px^2 + 1$ and $F_n = px^3 + 1$ for some fixed prime p (see [12]). Luca [8] proved that 55 is the largest number with only one distinct digit (called repdigit) in the Fibonacci sequence.

Recently, Castillo [3] dubbed a number of the form $Ft_n := n! + \frac{n(n+1)}{2}$ a factoriangular (from the sum between a factorial and the corresponding triangular). The first few factoriangular numbers are

 $Ft := \{2, 5, 12, 34, 135, 741, 5068, 40356, 362925, \ldots\}.$

This sequence is included in Sloane's The OnLine Encyclopedia of Integer Sequences (OEIS) [14] as sequence A101292. In [3], Castillo set forth the following conjecture.

Conjecture. The only Fibonacci factoriangular numbers are $F_3 = 2$, $F_5 = 5$ and $F_9 = 34$.

Here, we confirm Castillo's Conjecture.

Theorem 1. The only Fibonacci factoriangular numbers are 2, 5 and 34.

2. *p*-adic linear forms in logarithms

Our main tool is an upper bound for a non-zero p-adic linear form in two logarithms of algebraic numbers due to Bugeaud and Laurent [1].

We begin with some preliminaries. Let η be an algebraic number of degree d over \mathbb{Q} with minimal primitive polynomial over the integers

$$f(X) := a_0 \prod_{i=1}^d (X - \eta^{(i)}) \in \mathbb{Z}[X],$$

where the leading coefficient a_0 is positive. The *logarithmic height of* η is given by

$$h(\eta) := \frac{1}{d} \left(\log a_0 + \sum_{i=1}^d \log \max\{|\eta^{(i)}|, 1\} \right)$$

Let \mathbb{L} be an algebraic number field of degree $d_{\mathbb{L}}$. Let $\eta_1, \eta_2 \in \mathbb{L} \setminus \{0, 1\}$ and b_1, b_2 positive integers. We put

$$\Lambda = \eta_1^{b_1} - \eta_2^{b_2}.$$

For a prime ideal π of the ring $\mathcal{O}_{\mathbb{L}}$ of algebraic integers in \mathbb{L} and $\eta \in \mathbb{L}$, we denote by $\operatorname{ord}_{\pi}(\eta)$ the order at which π appears in the prime factorization of the principal fractional ideal $\eta \mathcal{O}_{\mathbb{L}}$ generated by η in \mathbb{L} . When η is an algebraic integer, $\eta \mathcal{O}_{\mathbb{L}}$ is an ideal of $\mathcal{O}_{\mathbb{L}}$. When $\mathbb{L} = \mathbb{Q}$, π is just a prime number. Let e_{π} and f_{π} be the ramification index and the inertial degree of π , respectively, and let $p \in \mathbb{Z}$ be the only prime number such that $\pi \mid p$. Then,

$$p\mathcal{O}_{\mathbb{L}} = \prod_{i=1}^{k} \pi_i^{e_{\pi_i}}, \quad |\mathcal{O}_{\mathbb{L}}/\pi| = p^{f_{\pi_i}} \text{ and } d_{\mathbb{L}} = \sum_{i=1}^{k} e_{\pi_i} f_{\pi_i},$$

where $\pi_1 := \pi, \ldots, \pi_k$ are prime ideals in $\mathcal{O}_{\mathbb{L}}$.

Download English Version:

https://daneshyari.com/en/article/5778860

Download Persian Version:

https://daneshyari.com/article/5778860

Daneshyari.com