Fibonacci factoriangular numbers

Carlos Alexis Gómez Ruiz ${ }^{\mathrm{a}, *}$, Florian Luca ${ }^{\text {b,c }}$

${ }^{\mathrm{b}}$ School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
${ }^{\text {c }}$ Department of Mathematics, Faculty of Sciences, University of Ostrava, 30. dubna 22, 70103 Ostrava 1, Czech Republic

Received 4 August 2016; received in revised form 13 March 2017; accepted 12 May 2017
Communicated by F. Beukers

Abstract

Let $\left(F_{m}\right)_{m \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{m+2}=F_{m+1}+F_{m}$, for all $m \geq 0$. In Castillo (2015), it is conjectured that 2,5 and 34 are the only Fibonacci numbers of the form $n!+\frac{n(n+1)}{2}$, for some positive integer n. In this paper, we confirm the above conjecture. (c) 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Fibonacci numbers; Factoriangular numbers; p-adic linear forms in logarithms of algebraic numbers

1. Introduction

The Fibonacci sequence $\left(F_{m}\right)_{m \geq 0}$ is given by $F_{0}=0, F_{1}=1$ and

$$
F_{m+2}=F_{m+1}+F_{m} \quad \text { for all } \quad m \geq 0
$$

The few terms of the Fibonacci sequence are

$$
F:=\{0,1,1, \mathbf{2}, 3,5,8,13,21, \mathbf{3 4}, 55,89,144,233,377,610, \ldots\} .
$$

Ljunggren [5] showed that the only squares in the Fibonacci sequence are 0,1 and 144. This was rediscovered by Cohn [4] and Wyler [16]. London and Finkelstein [6] and Pethő [10] proved that the only cubes in the Fibonacci sequence are 0, 1 and 8. Bugeaud, Mignotte and Siksek [2]

[^0]showed that the only perfect powers (of exponent larger than 1) in the Fibonacci sequence are $0,1,8$ and 144 . There are several other papers which study Diophantine equations arising from representing Fibonacci numbers by other quadratic and cubic polynomials such as $F_{n}=k^{2}+k+2$ (see [7]); $F_{n}=x^{2}-1$ or $F_{n}=x^{3} \pm 1$ (see [11]); $F_{n}=p x^{2}+1$ and $F_{n}=p x^{3}+1$ for some fixed prime p (see [12]). Luca [8] proved that 55 is the largest number with only one distinct digit (called repdigit) in the Fibonacci sequence.

Recently, Castillo [3] dubbed a number of the form $F t_{n}:=n!+\frac{n(n+1)}{2}$ a factoriangular (from the sum between a factorial and the corresponding triangular). The first few factoriangular numbers are

$$
F t:=\{\mathbf{2}, \mathbf{5}, 12, \mathbf{3 4}, 135,741,5068,40356,362925, \ldots\}
$$

This sequence is included in Sloane's The OnLine Encyclopedia of Integer Sequences (OEIS) [14] as sequence A101292. In [3], Castillo set forth the following conjecture.

Conjecture. The only Fibonacci factoriangular numbers are $F_{3}=2, F_{5}=5$ and $F_{9}=34$.
Here, we confirm Castillo's Conjecture.
Theorem 1. The only Fibonacci factoriangular numbers are 2, 5 and 34.

2. \boldsymbol{p}-adic linear forms in logarithms

Our main tool is an upper bound for a non-zero p-adic linear form in two logarithms of algebraic numbers due to Bugeaud and Laurent [1].

We begin with some preliminaries. Let η be an algebraic number of degree d over \mathbb{Q} with minimal primitive polynomial over the integers

$$
f(X):=a_{0} \prod_{i=1}^{d}\left(X-\eta^{(i)}\right) \in \mathbb{Z}[X]
$$

where the leading coefficient a_{0} is positive. The logarithmic height of η is given by

$$
h(\eta):=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left\{\left|\eta^{(i)}\right|, 1\right\}\right)
$$

Let \mathbb{L} be an algebraic number field of degree $d_{\mathbb{L}}$. Let $\eta_{1}, \eta_{2} \in \mathbb{L} \backslash\{0,1\}$ and b_{1}, b_{2} positive integers. We put

$$
\Lambda=\eta_{1}^{b_{1}}-\eta_{2}^{b_{2}}
$$

For a prime ideal π of the ring $\mathcal{O}_{\mathbb{L}}$ of algebraic integers in \mathbb{L} and $\eta \in \mathbb{L}$, we denote by $\operatorname{ord}_{\pi}(\eta)$ the order at which π appears in the prime factorization of the principal fractional ideal $\eta \mathcal{O}_{\mathbb{L}}$ generated by η in \mathbb{L}. When η is an algebraic integer, $\eta \mathcal{O}_{\mathbb{L}}$ is an ideal of $\mathcal{O}_{\mathbb{L}}$. When $\mathbb{L}=\mathbb{Q}$, π is just a prime number. Let e_{π} and f_{π} be the ramification index and the inertial degree of π, respectively, and let $p \in \mathbb{Z}$ be the only prime number such that $\pi \mid p$. Then,

$$
p \mathcal{O}_{\mathbb{L}}=\prod_{i=1}^{k} \pi_{i}^{e_{\pi_{i}}}, \quad\left|\mathcal{O}_{\mathbb{L}} / \pi\right|=p^{f_{\pi_{i}}} \quad \text { and } \quad d_{\mathbb{L}}=\sum_{i=1}^{k} e_{\pi_{i}} f_{\pi_{i}}
$$

where $\pi_{1}:=\pi, \ldots, \pi_{k}$ are prime ideals in $\mathcal{O}_{\mathbb{L}}$.

https://daneshyari.com/en/article/5778860

Download Persian Version:
https://daneshyari.com/article/5778860

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: carlos.a.gomez@correounivalle.edu.co (C.A. Gómez Ruiz), florian.luca@wits.ac.za (F. Luca).

