Model 1

pp. 1-8 (col. fig: NIL)

ARTICLE IN PRESS

Available online at www.sciencedirect.com

indagationes mathematicae

5

6

7

8

Indagationes Mathematicae xx (xxxx) xxx-xxx

www.elsevier.com/locate/indag

A spectral characterization of Riesz homomorphisms between complex Riesz algebras

Fethi Benamor*, Ghaith Sellami

Research Laboratory of Algebra-Topology-Arithmetic-Order, Department of Mathematics, Faculty of Sciences of Tunis, Tunis-El Manar University, 2092 Tunis, Tunisia

Received 5 December 2016; received in revised form 24 March 2017; accepted 12 May 2017

Communicated by: B. de Pagter

Abstract

Let \mathfrak{A} be a complex Riesz algebra with a positive identity e. We show that a (not necessary linear) functional $\phi : \mathfrak{A} \to \mathbb{C}$ is a unital Riesz homomorphism if and only if $\phi(\mathfrak{a}) - \phi(\mathfrak{b}) \in \sigma(P_e\mathfrak{a} - P_e\mathfrak{b})$ for all $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$, where P_e denotes the order projection onto the center $\{e\}^{dd}$ of \mathfrak{A} . Then, as an application, we prove that unital Riesz homomorphisms, local unital Riesz homomorphisms, and 2-local Riesz homomorphisms between complex Riesz algebras with positive identities coincide.

© 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Complex Riesz algebra; Unital Riesz homomorphism; Spectrum; Local; 2-local

1. Introduction

Let \mathfrak{A} be a complex algebra and $\phi : \mathfrak{A} \to \mathbb{C}$ be a linear functional. When \mathfrak{A} is a unital Banach algebra, the Gleason–Kahane–Zelasko theorem asserts that ϕ is a nonzero algebra homomorphism if and only if $\phi(\mathfrak{a}) \in \sigma(\mathfrak{a})$ for all $\mathfrak{a} \in \mathfrak{A}$. See [3,6]. Assume now that \mathfrak{A} is a unital Banach *f*-algebra. It follows from [5] that ϕ is a nonzero algebra homomorphisms if and only if ϕ is a unital Riesz homomorphism. So we can assert that ϕ is a unital Riesz homomorphism if and only if $\phi(\mathfrak{a}) \in \sigma(\mathfrak{a})$ for all $\mathfrak{a} \in \mathfrak{A}$. The case when \mathfrak{A} is just a Banach Riesz algebra with a positive identity was investigated by Huijssman [4]. He shows that in such a case ϕ is

* Corresponding author.

E-mail addresses: fethi.benamor@ipest.rnu.tn (F. Benamor), ghaith99@hotmail.fr (G. Sellami).

http://dx.doi.org/10.1016/j.indag.2017.05.004

0019-3577/© 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: F. Benamor, G. Sellami, A spectral characterization of Riesz homomorphisms between complex Riesz algebras, Indagationes Mathematicae (2017), http://dx.doi.org/10.1016/j.indag.2017.05.004.

ARTICLE IN PRESS

INDAG: 471

F. Benamor, G. Sellami / Indagationes Mathematicae xx (xxxx) xxx-xxx

a unital Riesz homomorphism if and only if $\phi(\mathfrak{a}) \in \sigma(P_e\mathfrak{a})$ for all $\mathfrak{a} \in \mathfrak{A}$, where P_e denotes the order projection (also called band projection) on $\{e\}^{dd}$. Recently, Azouzi and Boulabiar [1] studied Gleason–Kahane–Zelasko type theorems for unital Riesz algebras. They show that the result by Huijssman remains true when \mathfrak{A} is a complex (not necessary Banach) Riesz algebra with a positive identity.

In [7], Kowalsky and Slodowsky extended the Gleason–Kahane–Zelasko theorem to nonlinear functionals. More precisely, they proved that if \mathfrak{A} is a unital complex Banach algebra and $\phi : \mathfrak{A} \to \mathbb{C}$ is a (not necessary linear) functional, then ϕ is a nonzero algebra homomorphism if and only if ϕ (0) = 0 and ϕ (a) – ϕ (b) $\in \sigma$ (a – b) for all a, b $\in \mathfrak{A}$. The main purpose of this work is to give a Riesz algebra version of the Kowalsky–Slodowsky theorem. Our main result will be applied to study local and 2-local Riesz homomorphisms on complex Riesz algebras.

12 2. Preliminaries

17

28

Let \mathfrak{A} be a *complex Riesz space*, that is, \mathfrak{A} is the complexification of a uniformly complete (real) Riesz space $\mathfrak{A}_{\mathbb{R}}$. Observe that each $\mathfrak{a} \in \mathfrak{A}$ can be uniquely written in the form $\mathfrak{a} =$ Re $\mathfrak{a} + i \operatorname{Im} \mathfrak{a}$ where Re \mathfrak{a} , Im $\mathfrak{a} \in \mathfrak{A}_{\mathbb{R}}$. Recall also that \mathfrak{A} is endowed with the standard *absolute value* defined by

$$|\mathfrak{a}| = \sup \{(\cos \theta) \operatorname{Re} \mathfrak{a} + (\sin \theta) \operatorname{Im} \mathfrak{a} : \theta \in [0, 2\pi] \}, \text{ for all } \mathfrak{a} \in \mathfrak{A}.$$

Evidently, $|\text{Re} \mathfrak{a}| \le |\mathfrak{a}|$ and $|\text{Im} \mathfrak{a}| \le |\mathfrak{a}|$ for all $\mathfrak{a} \in \mathfrak{A}$. An element $\mathfrak{a} \in \mathfrak{A}$ is said to be *real* whenever Im $\mathfrak{a} = 0$, and *positive* whenever Im $\mathfrak{a} = 0$ and $\text{Re} \mathfrak{a} \ge 0$.

Now, let \mathfrak{A} and \mathfrak{B} be two complex Riesz spaces, and $T : \mathfrak{A} \to \mathfrak{B}$ be a linear operator. We say that *T* is *real* (respectively, *positive*) whenever *T* maps real (respectively, *positive*) elements in \mathfrak{A} into real (respectively, *positive*) elements in \mathfrak{B} . Also we call *T* a *Riesz homomorphism* if $|T\mathfrak{a}| = T |\mathfrak{a}|$ for all $\mathfrak{a} \in \mathfrak{A}$. We can prove that *T* is a Riesz homomorphism if and only if *T* is real and $x \land y = 0$ implies $T(x) \land T(y) = 0$ for all real elements $x, y \in \mathfrak{A}$.

A complex Riesz space \mathfrak{A} will be said a *complex Riesz algebra* if there exists an associative multiplication in \mathfrak{A} with the usual algebra properties such that $|\mathfrak{a}\mathfrak{b}| \le |\mathfrak{a}| |\mathfrak{b}|$ for all $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$. A complex Riesz algebra \mathfrak{A} for which

$$|\mathfrak{a}| \wedge |\mathfrak{b}| = 0 \text{ implies } (|\mathfrak{c}||\mathfrak{a}|) \wedge |\mathfrak{b}| = (|\mathfrak{a}||\mathfrak{c}|) \wedge |\mathfrak{b}| = 0 \text{ for all } \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathfrak{A}$$
(1)

is called a *complex f-algebra*. The complex Riesz space \mathfrak{A} is a complex Riesz algebra if and only if $\mathfrak{A}_{\mathbb{R}}$ is a Riesz algebra. Also \mathfrak{A} is a complex *f*-algebra if and only if $\mathfrak{A}_{\mathbb{R}}$ is an *f*-algebra.

Assume now that \mathfrak{A} is a complex Riesz algebra with a positive identity e. A subalgebra \mathfrak{B} 31 of \mathfrak{A} is said to be a *f*-subalgebra of \mathfrak{A} whenever \mathfrak{B} is a Riesz subalgebra of \mathfrak{A} that satisfies the 32 condition (1). Moreover \mathfrak{B} is said to be *full* whenever \mathfrak{B} is closed under inversion, that is, for 33 any $\mathfrak{a} \in \mathfrak{B}$ which has an inverse a^{-1} in \mathfrak{A} we have $a^{-1} \in \mathfrak{B}$. It turns out that the principal band 34 $\{e\}^{dd}$ generated by e in \mathfrak{A} is a full f-subalgebra of \mathfrak{A} . Thus, for any $\mathfrak{a} \in \{e\}^{dd}$, the spectrum 35 σ (a) of a in \mathfrak{A} coincides with its spectrum σ_e (a) in $\{e\}^{dd}$. The principal band $\{e\}^{dd}$ is also a 36 projection band in \mathfrak{A} , that is $\mathfrak{A} = \{e\}^{dd} \oplus \{e\}^{d}$. So, if P_e denotes the order projection onto $\{e\}^{dd}$, 37 then $\sigma(P_e\mathfrak{a}) = \sigma_e(P_e\mathfrak{a})$ for all $\mathfrak{a} \in \mathfrak{A}$. 38

At this point we consider two complex Riesz algebras \mathfrak{A} and \mathfrak{B} with positive identities $e_{\mathfrak{A}}$ and $e_{\mathfrak{B}}$ respectively and a linear operator $T : \mathfrak{A} \to \mathfrak{B}$. We say that T is *unital* whenever $T(e_{\mathfrak{A}}) = e_{\mathfrak{B}}$. Also T is called an *algebra homomorphism* if $T(\mathfrak{ab}) = T(\mathfrak{a})T(\mathfrak{b})$ for all $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$. When \mathfrak{A} and \mathfrak{B} are complex f-algebras, unital Riesz homomorphisms coincide with unital algebra homomorphisms.

2

Download English Version:

https://daneshyari.com/en/article/5778862

Download Persian Version:

https://daneshyari.com/article/5778862

Daneshyari.com