A globalization of a theorem of Horozov

Richard Cushman*, Jędrzej Śniatycki
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

Abstract

This paper proves a globalization of a theorem of Horozov (1990). In particular, it determines the inverse of the Horozov map from an explicitly determined simply connected domain in the upper half plane to the set of regular values of the energy-momentum map of the spherical pendulum with the h-axis removed for $h \geq 1$. © 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Spherical pendulum; Horozov's theorem; Global diffeomorphism

1. Introduction

In the study of action angle coordinates for the spherical pendulum [1, Chpt. IV] we come across the real analytic functions

$$
\begin{equation*}
2 \pi \Theta(h, \ell)=2 \ell \int_{x_{-}}^{x_{+}} \frac{1}{\left(1-x^{2}\right) \sqrt{2(h-x)\left(1-x^{2}\right)-\ell^{2}}} \mathrm{~d} x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
T(h, \ell)=2 \int_{x_{-}}^{x_{+}} \frac{1}{\sqrt{2(h-x)\left(1-x^{2}\right)-\ell^{2}}} \mathrm{~d} x \tag{2}
\end{equation*}
$$

[^0]0019-3577/© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
where $-1<x_{-}<x_{+}<1$ are real roots of $2(h-x)\left(1-x^{2}\right)-\ell^{2}$, when (h, ℓ) lies in

$$
\mathrm{R}=\left\{(h, \ell) \in \mathbb{R}^{2}-1<h, \frac{27}{4} \ell^{2}<\left(3+h^{2}\right)^{3 / 2}+h\left(9-h^{2}\right) \&(h, \ell) \neq(1,0)\right\} .
$$

R is the set of regular values of the energy-momentum mapping of the spherical pendulum. Geometrically, let \mathcal{C} be a cross section to the motion of the spherical pendulum of energy h and angular momentum ℓ. Then $T(h, \ell)$ is the time of first return to \mathcal{C} of a motion of the spherical pendulum starting on \mathcal{C}; whereas $\Theta(h, \ell)$ is the rotation number of this motion.

The theorem of Horozov [4], see also [3], states that for every $(h, \ell) \in \mathrm{R}$ we have det $\left(\begin{array}{ll}\frac{\partial T}{\partial h} & \frac{\partial \Theta}{\partial h} \\ \frac{\partial T}{\partial \ell} & \frac{\partial \Theta}{\partial \ell}\end{array}\right)<0$. In other words, Horozov's mapping

$$
\begin{equation*}
\Psi: \mathrm{R} \rightarrow \mathbb{R}^{2}:(h, \ell) \mapsto(\Theta(h, \ell), T(h, \ell)) \tag{3}
\end{equation*}
$$

is a local real analytic diffeomorphism. The goal of this paper is to prove the following globalization of Horozov's theorem.

Theorem. The global Horozov mapping

$$
\begin{align*}
\widetilde{\Psi} & : \mathrm{R} \backslash\{h>1 \& \ell=0\} \rightarrow \mathcal{D} \subseteq(0,1) \times(0, \infty):(h, \ell) \\
& \mapsto\left\{\begin{aligned}
(\Theta(h, \ell), T(h, \ell)), & \text { if }(h, \ell) \in(\mathrm{R} \cap\{\ell \geq 0\}) \backslash\{h>1 \& \ell=0\} \\
(\Theta(h, \ell)+1, T(h, \ell)), & \text { if }(h, \ell) \in(\mathrm{R} \cap\{\ell \leq 0\}) \backslash\{h>1 \& \ell=0\}
\end{aligned}\right. \tag{4}
\end{align*}
$$

is a real analytic diffeomorphism. A precise description of the simply connected domain \mathcal{D} is given in Corollary 4.3.

Since $\mathrm{R} \backslash\{h>1 \& \ell=0\}$ is simply connected, the map Ψ is just one sheet of a real analytic universal covering map of R.

2. Local properties of Θ and T

In this section we show that on R the functions Θ and T are locally real analytic.
First we show
Lemma 2.1. The functions Θ (1) and T (2) are locally real analytic on $\mathrm{R}^{\vee}=\mathrm{R} \backslash\{\ell=0\}$.
Proof. First we treat Θ. Let $P(z)=2(h-z)\left(1-z^{2}\right)-\ell^{2}$, where $(h, \ell) \in \mathbf{R}^{\vee}$. Consider the 1-form $\varpi=\frac{1}{\left(1-z^{2}\right) \sqrt{P(z)}} \mathrm{d} z$ on \mathbb{C}^{\vee}, the extended complex plane, which is cut along the real axis between x_{-}and x_{+}and again between x_{0} and ∞. Here $x_{ \pm, 0}$ are distinct roots of P with

$$
\left\{\begin{array}{l}
-1<x_{-}<x_{+}<h<1<x_{0}, \quad \text { if }-1<h<1 \\
-1<x_{-}<x_{+}<1<h<x_{0}, \quad \text { if } h>1 .
\end{array}\right.
$$

Write $\sqrt{P(z)}=\sqrt{r_{-} r_{+} r_{0}} \mathrm{e}^{i\left(\theta_{-}+\theta_{+}+\theta_{0}\right) / 2}$, where $z-x_{0, \pm}=r_{0, \pm} \mathrm{e}^{i \theta_{0, \pm}}$ and $0 \leq \theta_{0, \pm}<2 \pi$. With this choice of complex square root on \mathbb{C}^{\vee} we see that ϖ is single-valued and meromorphic with a first order pole at $z= \pm 1$ whose residue is

$$
\begin{align*}
\operatorname{Res}_{z= \pm 1} \varpi & =\lim _{z \rightarrow \pm 1}(z \mp 1) \frac{1}{\left(1-z^{2}\right) \sqrt{P(z)}} \\
& =-\lim _{z \rightarrow \pm 1} \frac{1}{z \pm 1} \frac{1}{\sqrt{P(z)}}=\mp \frac{1}{2 \sqrt{P(\pm 1)}}=i \frac{1}{2|\ell|} \tag{5}
\end{align*}
$$

https://daneshyari.com/en/article/5778872

Download Persian Version:

https://daneshyari.com/article/5778872

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rcushman@ucalgary.ca (R. Cushman), sniatyck@ucalgary.ca (J. Śniatycki).

