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Highlights

• Geometric tools to describe slow–fast Hamiltonian systems on smooth manifolds.
• Direct derivation of Painlevè-1 equation as a principal part of a slow–fast Hamiltonian system near a fold

point of a slow manifold.
• Direct derivation of Painlevè-2 equation as a principal part of a slow–fast Hamiltonian system near a cusp

point of a slow manifold.
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Abstract 4

In the first part of the paper we introduce some geometric tools needed to describe slow–fast Hamiltonian 5

systems on smooth manifolds. We start with a smooth bundle p : M → B where (M, ω) is a C∞- 6

smooth presymplectic manifold with a closed constant rank 2-form ω and (B, λ) is a smooth symplectic 7

manifold. The 2-form ω is supposed to be compatible with the structure of the bundle, that is the bundle 8

fibers are symplectic manifolds with respect to the 2-form ω and the distribution on M generated by kernels 9

of ω is transverse to the tangent spaces of the leaves and the dimensions of the kernels and of the leaves 10

are supplementary. This allows one to define a symplectic structure Ωε = ω + ε−1 p∗λ on M for any 11

positive small ε, where p∗λ is the lift of the 2-form λ to M . Given a smooth Hamiltonian H on M one 12

gets a slow–fast Hamiltonian system with respect to Ωε . We define a slow manifold SM for this system. 13

Assuming SM is a smooth submanifold, we define a slow Hamiltonian flow on SM . The second part of the 14

paper deals with singularities of the restriction of p to SM . We show that if dim M = 4, dim B = 2 and 15

Hamilton function H is generic, then the behavior of the system near a singularity of fold type is described, 16
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to the main order, by the equation Painlevé-I, and if this singularity is a cusp, then the related equation is1

Painlevé-II.2
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1. Introduction6

Slow–fast Hamiltonian systems are ubiquitous in the applications in different fields ofQ37

science. These applications range from astrophysics, plasma physics and ocean hydrodynamics8

to molecular dynamics. Usually these problems are given in coordinate form, moreover, in the9

form where a symplectic structure in the phase space is standard (in Darboux coordinates). But10

there are cases when either the symplectic form is nonstandard or the system under study is of a11

kind where the corresponding symplectic form has to be found, in particular, when we deal with12

the system on a manifold.13

It is our aim in this paper to present basic geometric tools to describe slow–fast Hamiltonian14

systems on manifolds, that is in a coordinate-free way. For the non Hamiltonian case this was15

done by V.I. Arnold [1]. Recall that a customary slow–fast dynamical system is defined by a16

system of differential equations17

εẋ = f (x, y, ε), ẏ = g(x, y, ε), (x, y) ∈ Rm
× Rn, (1)18

depending on a small positive parameter ε (its positivity is needed to fix the direction of19

increasing time t). It is evident that x-variables in the region of the phase space where f ≠ 020

change with the speed ∼ 1/ε that is fast. In comparison with them the change of y-variables is21

slow. Therefore variables x are called fast and y are called slow.22

Such system generates two limiting systems whose properties influence the dynamics of the23

slow–fast system for a small ε. One of the limiting system is called fast or layer system and is24

derived in the following way. Let us introduce the so-called fast time τ = t/ε. Then the system25

acquires the parameter ε in the right hand side of the second equation (due to the differentiation26

in τ ) but looses it in the first equation. Thus, the right hand sides depend on ε in a regular way27

dx

dτ
= f (x, y, ε),

dy

dτ
= εg(x, y, ε), (x, y) ∈ Rm

× Rn . (2)28

Setting then ε = 0 we get the system, where y-variables are constants y = y0 and they can29

be considered as parameters in the equations for x . Sometimes these equations are called layer30

equations. Because the fast system depends on parameters, it may pass through many bifurcations31

as parameters y change and this can be useful to find some special motions in the full system for32

small ε > 0.33

The slow equations are derived as follows. Let us formally set ε = 0 in the system (1) and34

solve the equations f = 0 with respect to x (where it is possible). The most natural case when35

this can be done, is when the matrix fx is invertible in some domain where solutions for equations36

f = 0 exist. Then by the implicit function theorem one can solve the system f = 0. Denote the37

related branch of solutions as x = h(y) and insert it into the second equation instead of x . Then38

one gets a system of differential equations for y variables39

ẏ = g(h(y), y, 0),40
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