ARTICLE IN PRESS

Available online at www.sciencedirect.com

ScienceDirect

indagationes mathematicae

Indagationes Mathematicae ■ (■■■) ■■■

www.elsevier.com/locate/indag

A generalization of the Erdös–Surányi problem

Eiji Miyanohara

Major in Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Received 1 July 2016; received in revised form 20 July 2016; accepted 2 August 2016

Communicated by R. Tijdeman

Abstract

Erdös–Surányi and Prielipp suggested to study the following problem: For any integers k > 0 and n, are there an integer N and a map $\epsilon : \{1, \ldots, N\} \to \{-1, 1\}$ such that

$$n = \sum_{j=1}^{N} \epsilon(j)j^{k}? \tag{0.1}$$

Mitek and Bleicher independently solved this problem affirmatively.

In this paper we consider the case that for some positive odd integer L the numbers $\epsilon(j)$ are L-th roots of unity. We show that the answer to the corresponding question is negative if and only if L is a prime power. © 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Theorem of Erdös and Surányi; The set of roots of unity; Prielipp's problem; Representation of integers; Signed sums

1. Introduction

Erdös–Surányi [7] and Prielipp [3] suggested to study the following problem: For any integers k > 0 and n, are there an integer N and a map $\epsilon : \{1, \ldots, N\} \to \{-1, 1\}$ such that

$$n = \sum_{j=1}^{N} \epsilon(j)j^{k} ? \tag{1.1}$$

E-mail address: miyanohara@aoni.waseda.jp.

http://dx.doi.org/10.1016/j.indag.2016.08.002

0019-3577/© 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: E. Miyanohara, A generalization of the Erdös–Surányi problem, Indagationes Mathematicae (2016), http://dx.doi.org/10.1016/j.indag.2016.08.002

2

Mitek [8] and Bleicher [3] independently solved this problem affirmatively. Later many people investigated analogies and generalizations of this problem (see [1,2,5,6,9]). Some researchers replaced the function ϵ by another function [4,5].

We study the case that the values of ϵ are Lth roots of unity, where L is a positive integer. Since, by [3,8], we already know that the answer is positive if L is even, we restrict our attention to odd L. Let U be the set of Lth roots of unity. Then we consider the following problem (cf. [4]). For any integers k > 0 and n, are there an integer N and a map $\epsilon : \{1, \ldots, N\} \to U$ such that

$$n = \sum_{j=1}^{N} \epsilon(j)j^{k}? \tag{1.2}$$

We prove the following result.

Theorem 1.1. Let L be a positive odd integer with $L \ge 2$ which is not a prime power and let U be the set of Lth roots of unity.

Then for any integers k > 0 and n, there are an integer N and a map $\epsilon : \{1, ..., N\} \to U$ such that

$$n = \sum_{j=1}^{N} \epsilon(j)j^{k}. \tag{1.3}$$

The following result shows that the statement of Theorem 1.1 is valid if L is an odd prime power p^m and k is a multiple of p-1.

Theorem 1.2. Let p be an odd prime number, m be a positive integer and let U be the set of p^m th roots of unity. Then for any integers k > 0 with $p - 1 \mid k$ and n, there are an integer N and a map $\epsilon : \{1, \ldots, N\} \to U$ such that

$$n = \sum_{j=1}^{N} \epsilon(j)j^{k}. \tag{1.4}$$

Moreover the following result shows that the statement of Theorem 1.1 is not valid if L is an odd prime power p^m and k is not a multiple of p-1.

Theorem 1.3. Let p be an odd prime number, m be a positive integer and let U be the set of p^m th roots of unity. Then for any integer k > 0 with $p - 1 \nmid k$, there are infinitely many integers n such that n cannot be represented as

$$n = \sum_{j=1}^{N} \epsilon(j)j^{k}, \tag{1.5}$$

where N is a positive integer and $\epsilon: \{1, ..., N\} \to U$.

Remark 1.4. Theorem 1.3 contradicts Theorem 5.3 in [4]. The proof of Proposition 4.2 of [4] contains a serious error. Let μ_K , \mathcal{R} , $\varepsilon D_m[f](l)$ and $\varepsilon \overline{D_m}[f](l)$ be defined as in [4]. Since μ_K need not contain -1, it may be that $\varepsilon D_m[f](l)$ and $\varepsilon \overline{D_m}[f](l)$ are not contained in \mathcal{R} .

2. Proof of Theorem 1.1

First we generalize Lemma 3 in [3] as follows:

Download English Version:

https://daneshyari.com/en/article/5778899

Download Persian Version:

https://daneshyari.com/article/5778899

<u>Daneshyari.com</u>