Wiener-Hopf indices of unitary functions on the unit circle in terms of realizations and related results on Toeplitz operators

G.J. Groenewald ${ }^{\text {a }}$, M.A. Kaashoek ${ }^{\text {b }}$, A.C.M. Ran ${ }^{\text {b,c, }}{ }^{\text {, }}$
${ }^{\text {a School of Computer, Statistical and Mathematical Sciences, North-West University, Research unit for BMI, }}$ Private Bag X6001, Potchefstroom 2520, South Africa
${ }^{\mathrm{b}}$ Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands
${ }^{\text {c }}$ Unit for BMI, North West University, Potchefstroom, South Africa

Received 11 November 2016; received in revised form 18 January 2017; accepted 24 March 2017
Communicated by: H.J. Woerdeman

Abstract

We provide new formulas for the Wiener-Hopf factorization indices of a rational matrix function R which has neither poles nor zeros on the unit circle. In addition, we recover recent results on the Fredholm characteristics of the Toeplitz operator with symbol R via the method of matricial coupling. Furthermore, we present an alternative formula for the index in terms of the Fourier coefficients of R. (C) 2017 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

Keywords: Wiener-Hopf indices; Toeplitz operators

1. Introduction and preliminaries

The main goal of this paper is to provide formulas for the Wiener-Hopf indices of a rational $m \times m$ matrix function R which has no poles and zeros on the unit circle and has unitary values

[^0]there. Moreover, we shall also provide an alternative formula for the index of the associated Toeplitz operator in terms of the Fourier coefficients of R.

We start with some notation and terminology. Recall that a right Wiener-Hopf factorization with respect to the unit circle (see, for instance, $[3,5,6]$) is a factorization

$$
R(z)=W_{-}(z) D(z) W_{+}(z)
$$

where the factors W_{-}and W_{+}are rational $m \times m$ matrix functions such that
(i) W_{-}has no poles and zeros outside the open unit disc including infinity,
(ii) W_{+}has no poles and zeros on the closed unit disc,
and where the middle term D is a diagonal matrix

$$
D(z)=\operatorname{diag}\left(z^{-\alpha_{1}}, \ldots, z^{-\alpha_{s}}\right) \oplus I_{k} \oplus \operatorname{diag}\left(z^{\omega_{t}}, \ldots, z^{\omega_{1}}\right)
$$

where $-\alpha_{1} \leq \cdots \leq-\alpha_{s}<0$ and $0<\omega_{t} \leq \cdots \leq \omega_{1}$ are integers, and $m=s+k+t$. The numbers α_{j} and ω_{j} are called the right Wiener-Hopf indices. Introducing

$$
\kappa_{j}= \begin{cases}-\alpha_{j}, & j=1, \ldots, s \\ 0, & j=s+1, \ldots, m-t \\ \omega_{m-j+1}, & j=m-t+1, \ldots, m\end{cases}
$$

the middle term $D(z)$ can be written as $D(z)=\operatorname{diag}\left(z^{\kappa_{1}}, \ldots, z^{\kappa_{m}}\right)$. Reversing the roles of W_{-} and W_{+}one obtains the definition of a left Wiener-Hopf factorization and left Wiener-Hopf indices. If $\kappa_{j}=0$ for all j, the factorization is called a right canonical factorization.

There is an intimate relation between the Wiener-Hopf indices and the Toeplitz operator T_{R} acting on $\ell_{+}^{2}\left(\mathbb{C}^{m}\right)$ with defining function R, as follows:

$$
\begin{aligned}
& n\left(T_{R}\right):=\operatorname{dim} \operatorname{Ker} T_{R}=\sum_{j=1}^{s} \alpha_{j}=\sum_{\kappa_{j} \leq 0}-\kappa_{j}, \\
& d\left(T_{R}\right):=\operatorname{codim} \operatorname{Im} T_{R}=\sum_{j=1}^{t} \omega_{j}=\sum_{\kappa_{j} \geq 0} \kappa_{j}, \\
& \text { ind } T_{R}:=n\left(T_{R}\right)-d\left(T_{R}\right)=\sum_{j=1}^{s} \alpha_{j}-\sum_{j=1}^{t} \omega_{j},
\end{aligned}
$$

Theorem VIII.5.1 in [11], also Theorem 2.18 in [15], while for an analogous result on singular integral operators we refer to [6,15]. Even more precisely, introduce $R_{k}(z)=z^{-k} R(z)$, then we have, see [13], Section XXIV.4, page 590,

$$
\#\left\{j \mid \kappa_{j}=k\right\}=\left(d\left(T_{R_{k+1}}\right)-d\left(T_{R_{k}}\right)\right)-\left(d\left(T_{R_{k}}\right)-d\left(T_{R_{k-1}}\right)\right)
$$

The problem we are interested in is to find the Wiener-Hopf indices explicitly in terms of a realization of the symbol R. For the case of matrix polynomials this was carried out in [16] and [20]. The special case of rational matrix functions which are analytic and invertible at infinity was done in detail in [10], and in [2,3], see also [5] Theorem 7.8, in terms of proper realizations, and in [14] with a different approach. However, the restriction on the proper realization of regularity at infinity is severe: indeed, the diagonal term $D(z)=\operatorname{diag}\left(z^{\kappa_{1}}, \ldots, z^{\kappa_{m}}\right)$ does not fall into the class of functions that are regular at infinity. A description of the Wiener-Hopf indices in terms of observability and controllability indices of certain pairs of matrices coming

https://daneshyari.com/en/article/5778928

Download Persian Version:
https://daneshyari.com/article/5778928

Daneshyari.com

[^0]: * Corresponding author at: Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

 E-mail addresses: gilbert.groenewald@nwu.ac.za (G.J. Groenewald), m.a.kaashoek @vu.nl (M.A. Kaashoek), a.c.m.ran@vu.nl (A.C.M. Ran).

