

Available online at www.sciencedirect.com

ScienceDirect

indagationes mathematicae

Indagationes Mathematicae 28 (2017) 711-720

www.elsevier.com/locate/indag

Generalization of some hypergeometric functions

Mohamed Kerada^{a,*}, Ali Boussayoud^b, Abdelhamid Abderrezzak^c

^a LMAM Laboratory and Department of Computer Science, University of MSB Jijel, BP 98 Ouled Aissa, Jijel 18000,

Algeria

^b LMAM Laboratory and Department of Mathematics, University of MSB Jijel, BP 98 Ouled Aissa, Jijel 18000, Algeria ^c University of Paris 7, LITP, Place Jussieu, Paris cedex 05, France

Received 14 November 2015; received in revised form 29 January 2017; accepted 24 March 2017

Communicated by F. Beukers

Abstract

In this paper, we make use of the Lagrange interpolation to obtain some algebraic identities, involving one or two infinite sets of variables.

© 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Symmetric functions; Divided differences; Lagrange interpolation

1. Introduction

One of the most important general expansion formulas for hypergeometric series is the Fields and Wimp expansion, described by [5]:

$$r_{+t}F_{s+u}\begin{bmatrix}a_R, & c_T\\b_S, & d_U\end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a_R)_n(\alpha)_n(\beta)_n}{(b_S)(\gamma+n)_n} \frac{(-x)^n}{n!}r_{+2}F_{s+1}$$
$$\times \begin{bmatrix}n+\alpha, & n+\beta, & n+a_R\\1+2n+\gamma, & n+b_S\end{bmatrix}$$

* Corresponding author.

http://dx.doi.org/10.1016/j.indag.2017.03.002

0019-3577/© 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

E-mail addresses: mkerada@yahoo.fr (M. Kerada), aboussayoud@yahoo.fr (A. Boussayoud), abderrezzak.abdelhamid@neuf.fr (A. Abderrezzak).

M. Kerada et al. / Indagationes Mathematicae 28 (2017) 711-720

$$\times_{t+2}F_{u+2}\begin{bmatrix}-n, & n+\gamma, & c_T\\ \alpha, & \beta & d_U; w\end{bmatrix},$$

where the contract notations $(a)_n$, a_R , $(a_R)_n$, and $n + a_R$ represent $a(a + 1) \dots (a + n - 1)$, a_1, \dots, a_r , $(a_R)_n$, $(a_1)_n$, $(a_2)_n \dots (a_r)_n$, and $n + a_1, \dots, n + a_r$, respectively.

Verma showed in [8] that this formula is a special case of expansion (6.1) and derived the q-analog (6.2).

On the other hand, Al-Salam and Verma [3] showed that Euler's transformation formula

$$\sum_{n=0}^{\infty} a_n b_n x^n = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!} f^{(k)}(x) \Delta^k a_0,$$
(1.1)

where

$$f(x) = b_0 + b_1 x + b_2 x^2 + \cdots,$$

and

$$\Delta^k a_0 = \sum_{j=0}^k (-1)^j \binom{k}{j} a_{k-j}$$

has bibasic extension (5.2).

For their part, Gessel and Stanton [6] obtained the following generating function

$$\frac{(1+x)^a(1+y)^b}{(1-xy)^{a+b+1}} = \sum_{k=0,p=0}^{\infty} {\binom{a+p}{k} \binom{b+k}{p} x^k y^p}.$$
(1.2)

In this paper, we make use of the divided differences [2] and the Lagrange interpolation to obtain algebraic identities, involving one or two infinite sets of variables (formulas (4.1)-(4.3)). By specializing variables sets, we recover formulas ((6.1) and (6.2)) provided by Verma [8], formula (5.2) given by Al-Salem and Verma [3], and generating function (7.1) of Gessel and Stanton [6].

We also give a new q-analog of results ((5.3), (5.4), (6.3), (6.4), (7.3), (7.4), (7.5)).

For this purpose, the Lagrange interpolation is considered to describe the properties of a linear operator, sending function of one variable to a symmetric function [4]. It can be written as a summation on a set, or a product of divided differences. This later version will be used throughout this paper.

2. Multiple interpolations

In this section, we consider the linear operator $\Lambda(A)$ of the Lagrange interpolation defined by

$$\Lambda(A)(f) = \sum_{a \in A} \frac{f(a)}{R(a, A \setminus a)}$$
(2.1)

where $R(a, B) = R_{b \in B}(a - b)$ and $R(a, \emptyset) = 1$.

Accordingly, this operator sends a polynomial of degree k to a symmetric polynomial in A of degree k - n, with card(A) = n + 1. In particular, it annihilates polynomials of degree < n, and $f(x) = x^n$ on constant 1.

712

Download English Version:

https://daneshyari.com/en/article/5778929

Download Persian Version:

https://daneshyari.com/article/5778929

Daneshyari.com