# Generalization of some hypergeometric functions 

Mohamed Kerada ${ }^{\text {a,* }}$, Ali Boussayoud ${ }^{\text {b }}$, Abdelhamid Abderrezzak ${ }^{\text {c }}$<br>${ }^{\text {a }}$ LMAM Laboratory and Department of Computer Science, University of MSB Jijel, BP 98 Ouled Aissa, Jijel 18000, Algeria<br>${ }^{\mathrm{b}}$ LMAM Laboratory and Department of Mathematics, University of MSB Jijel, BP 98 Ouled Aissa, Jijel 18000, Algeria<br>${ }^{\text {c }}$ University of Paris 7, LITP, Place Jussieu, Paris cedex 05, France

Received 14 November 2015; received in revised form 29 January 2017; accepted 24 March 2017
Communicated by F. Beukers


#### Abstract

In this paper, we make use of the Lagrange interpolation to obtain some algebraic identities, involving one or two infinite sets of variables. © 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.


Keywords: Symmetric functions; Divided differences; Lagrange interpolation

## 1. Introduction

One of the most important general expansion formulas for hypergeometric series is the Fields and Wimp expansion, described by [5]:

$$
\begin{aligned}
{ }_{r+t} F_{s+u}\left[\begin{array}{cc}
a_{R}, & c_{T} \\
b_{S}, & d_{U}
\end{array} ; x w\right]= & \sum_{n=0}^{\infty} \frac{\left(a_{R}\right)_{n}(\alpha)_{n}(\beta)_{n}}{\left(b_{S}\right)(\gamma+n)_{n}} \frac{(-x)^{n}}{n!} r+2 F_{S+1} \\
& \times\left[\begin{array}{ccc}
n+\alpha, & n+\beta, & n+a_{R} ; x \\
1+2 n+\gamma, & n+b_{S}
\end{array}\right.
\end{aligned}
$$

[^0]\[

\times_{t+2} F_{u+2}\left[$$
\begin{array}{ccc}
-n, & n+\gamma, & c_{T} \\
\alpha, & \beta & d_{U}
\end{array}
$$\right]
\]

where the contract notations $(a)_{n}, a_{R},\left(a_{R}\right)_{n}$, and $n+a_{R}$ represent $a(a+1) \ldots(a+n-$ 1), $a_{1}, \ldots, a_{r},\left(a_{R}\right)_{n},\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \ldots\left(a_{r}\right)_{n}$, and $n+a_{1}, \ldots, n+a_{r}$, respectively.

Verma showed in [8] that this formula is a special case of expansion (6.1) and derived the $q$-analog (6.2).

On the other hand, Al-Salam and Verma [3] showed that Euler's transformation formula

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} b_{n} x^{n}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!} f^{(k)}(x) \Delta^{k} a_{0} \tag{1.1}
\end{equation*}
$$

where

$$
f(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots,
$$

and

$$
\Delta^{k} a_{0}=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} a_{k-j}
$$

has bibasic extension (5.2).
For their part, Gessel and Stanton [6] obtained the following generating function

$$
\begin{equation*}
\frac{(1+x)^{a}(1+y)^{b}}{(1-x y)^{a+b+1}}=\sum_{k=0, p=0}^{\infty}\binom{a+p}{k}\binom{b+k}{p} x^{k} y^{p} \tag{1.2}
\end{equation*}
$$

In this paper, we make use of the divided differences [2] and the Lagrange interpolation to obtain algebraic identities, involving one or two infinite sets of variables (formulas (4.1)-(4.3)). By specializing variables sets, we recover formulas ((6.1) and (6.2)) provided by Verma [8], formula (5.2) given by Al-Salem and Verma [3], and generating function (7.1) of Gessel and Stanton [6].

We also give a new $q$-analog of results ((5.3), (5.4), (6.3), (6.4), (7.3), (7.4), (7.5)).
For this purpose, the Lagrange interpolation is considered to describe the properties of a linear operator, sending function of one variable to a symmetric function [4]. It can be written as a summation on a set, or a product of divided differences. This later version will be used throughout this paper.

## 2. Multiple interpolations

In this section, we consider the linear operator $\Lambda(A)$ of the Lagrange interpolation defined by

$$
\begin{equation*}
\Lambda(A)(f)=\sum_{a \in A} \frac{f(a)}{R(a, A \backslash a)} \tag{2.1}
\end{equation*}
$$

where $R(a, B)=R_{b \in B}(a-b)$ and $R(a, \emptyset)=1$.
Accordingly, this operator sends a polynomial of degree $k$ to a symmetric polynomial in $A$ of degree $k-n$, with $\operatorname{card}(A)=n+1$. In particular, it annihilates polynomials of degree $<n$, and $f(x)=x^{n}$ on constant 1 .

# https://daneshyari.com/en/article/5778929 

Download Persian Version:
https://daneshyari.com/article/5778929

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: mkerada@yahoo.fr (M. Kerada), aboussayoud@yahoo.fr (A. Boussayoud), abderrezzak.abdelhamid@neuf.fr (A. Abderrezzak).

