Shrinking random β-transformation

Kan Jiang, Karma Dajani*
Department of Mathematics, Utrecht University, Fac Wiskunde en informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

Abstract

For any $n \geq 3$, let $1<\beta<2$ be the largest positive real number satisfying the equation $$
\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1
$$

In this paper we define the shrinking random β-transformation K and investigate natural invariant measures for K, and the induced transformation of K on a special subset of the domain. We prove that both transformations have a unique measure of maximal entropy. However, the measure induced from the intrinsically ergodic measure for K is not the intrinsically ergodic measure for the induced system. © 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Random β-transformation; Unique measure of maximal entropy; Invariant measure

1. Introduction

Let $\beta \in(1,2)$ and $x \in \mathcal{A}_{\beta}=\left[0,(\beta-1)^{-1}\right]$, we call a sequence $\left(a_{n}\right)_{n=1}^{\infty} \in\{0,1\}^{\mathbb{N}} \mathrm{a}$ β-expansion of x if

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{\beta^{n}} .
$$

Renyi [11] introduced the greedy map, and showed that the greedy expansion $\left(a_{i}\right)_{i=1}^{\infty}$ of $x \in[0,1)$ can be generated by defining $T(x)=\beta x \bmod 1$ and letting $a_{i}=k$ whenever

[^0]http://dx.doi.org/10.1016/j.indag.2016.11.013
0019-3577/© 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Fig. 1. The dynamical system for $\left\{T_{0}(x)=\beta x, T_{1}(x)=\beta x-1\right\}$.
$T^{i-1}(x) \in\left[k \beta^{-1},(k+1) \beta^{-1}\right)$. Since then, many papers were dedicated to the dynamical properties of this map, see for example [12,5,8,10,4,9] and references therein. However, Renyi's greedy map is not the unique dynamical approach to generate β-expansions. In [6] (see also [3,4]) a new transformation was introduced, the random β-transformation, that generates all possible β expansions, see Fig. 1. This transformation makes random choices between the maps $T_{0}(x)=\beta x$ and $T_{1}(x)=\beta x-1$ whenever the orbit falls into $\left[\beta^{-1}, \beta^{-1}(\beta-1)^{-1}\right]$, which we refer to as the switch region.

Although, all possible β-expansions can be generated via the random β-transformation, nevertheless, for some practical problems one would want to make choices only on a subset of the switch region $\left[\beta^{-1}, \beta^{-1}(\beta-1)^{-1}\right.$], for instance, in A / D (analog-to-digit) conversion [7]. This motivates our study of the shrinking random β-transformation described below.

Let $1<\beta<2^{-1}(1+\sqrt{5}), \Omega=\{0,1\}^{\mathbb{N}}$, and $E=\left[0,(\beta-1)^{-1}\right]$. Set $a=\left(\beta^{2}-1\right)^{-1}, b=$ $\beta\left(\beta^{2}-1\right)^{-1}$, i.e. $T_{0}(a)=b, T_{1}(b)=a$. The shrinking random β-transformation K is defined in the following way (see Fig. 2).

Definition 1.1. $K: \Omega \times E \rightarrow \Omega \times E$ is defined by

$$
K(\omega, x)=\left\{\begin{array}{cc}
(\omega, \beta x) & x \in[0, a) \\
\left(\sigma(\omega), \beta x-\omega_{1}\right) & x \in[a, b] \\
(\omega, \beta x-1) & x \in\left(b,(\beta-1)^{-1}\right] .
\end{array}\right.
$$

Given $(\omega, x) \in \Omega \times[a, b]$, the first return time is defined by

$$
\tau(\omega, x)=\min \left\{n \geq 1: K^{i}(\omega, x) \notin \Omega \times[a, b], 1 \leq i \leq n-1, K^{n}(\omega, x) \in \Omega \times[a, b]\right\} .
$$

Define $K_{\Omega \times[a, b]}(\omega, x)=K^{\tau(\omega, x)}(\omega, x)$, and denote it for simplicity by I.
We now consider a special family of algebraic bases defined as follows. For any $n \geq 3$, let $1<\beta<2$ be the largest positive real number satisfying the equation

$$
\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1
$$

The following lemma is clear.
Lemma 1.2. For any $n \geq 3$, let $\beta_{n}>1$ be the largest positive real root of the equation

$$
\begin{equation*}
x^{n}=x^{n-2}+x^{n-3}+\cdots+x+1 . \tag{1}
\end{equation*}
$$

Then $\left(\beta_{n}\right)$ is an increasing sequence which converges to $2^{-1}(1+\sqrt{5})$.

https://daneshyari.com/en/article/5778938

Download Persian Version:

https://daneshyari.com/article/5778938

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: k.dajani1 @uu.nl (K. Dajani).

