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Marine sediments cover two-thirds of the earth, and porosity (or void ratio) is a major controlling 
parameter in virtually every model of seafloor properties, including strength, sound speed, hydrology, 
thermal conductivity, and electrical resistivity. Our new model of void ratio (e) is based on the 
proportional void ratio, [ep = (e − er)/(e0 − er)], where e0 is the depositional maximum at the sea floor, 
and er is the minimum residual void ratio at depth. We assume the values of e0 and er are inherent 
characteristics of the sediment type. Our model further defines the compression index Cc to be the 
square root of the proportional void ratio (Cc(e) = (ep)1/2). This new formulation establishes a direct 
relation between void ratio and effective stress: e = (e0 − er)

−1[log10(σ0/σ ) + 2(e0 − er)]2/4 + er and 
exhibits several advantages over previous models that we demonstrate with compression test data from 
the Gulf of Mexico and Nankai Trough.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In order to understand sub-seafloor processes relevant to re-
source exploration, fluid cycling, slope stability and hazard analy-
sis, scientists must first model the physical properties of the sed-
iment column. Physical models of sub-seafloor properties, includ-
ing density, sound speed, thermal conductivity, electrical resistivity 
and others, depend significantly on porosity (or equivalently, void 
ratio). Knowing the stress–strain relationship for each layer in a 
column of sediment allows estimation of the porosity from deposi-
tion at the seafloor to deep burial. From porosity, one can then es-
timate numerous sediment geophysical parameters and implement 
existing models, such as the sediment physics model of Dvorkin 
et al. (1999), the thermal property models of Goto and Matsub-
ayashi (2009), and Waite et al. (2009), the permeability model of 
Revil and Cathles (1999) and the resistivity relationships of Archie
(1942) and Collett and Ladd (2000), to create an extensive physical 
model of the sediment.

We present here a new formulation for the reduction of sed-
iment porosity (sediment compression) with increasing effective 
stress. The result is an equation relating void ratio (e) to the log10
of the vertical effective stress (σ ′), which can be used to model 
void ratio as a function of depth. From the void ratio, and other 
inputs, we could use the models mentioned above to estimate 
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pressure, temperature, density, sound speed, shear wave speed, 
and electrical resistivity. Because these models have roots in both 
marine geophysical and geotechnical literature, we use in this pa-
per both porosity (φ), and void ratio (e), to describe the volume 
fraction of void space, where e = φ/(1 − φ), and φ = e/(1 + e).

The expression for the compression of marine sediment dur-
ing normal consolidation used in recent literature (e.g., Long et al., 
2011; Dugan, 2012) dates back to Terzaghi and Peck (1948) and is 
based on the change in void ratio being proportional to the base 
10 logarithm of the vertical effective stress:

e2 = e1 − Cc log10
(
σ ′) (1)

where Cc is the constant of proportionality, also called the com-
pression index, and e1 and e2 are the initial and final void ratios. 
The vertical effective stress, σ ′ (in kPa), is the load supported by 
the grains, equal to the difference between the total lithostatic 
pressure (σ ) and the pore pressure. In Eq. (1), Cc is an empirical 
constant, equal to the slope of the e − log10(σ

′) curve for a given 
sediment type. Since Cc is assumed to be constant, the virgin con-
solidation curve in e − log10(σ

′) space is modeled as a straight 
line. However, it has been observed for some time (e.g., Butterfield, 
1979) that the stress–strain curve, or e − log10(σ

′) curve, is con-
cave upward (as in Fig. 1), implying that Cc is not constant, but 
actually a function of void ratio (Long et al., 2011). The variation 
in Cc with void ratio is particularly notable in clay-rich marine 
sediments where void ratio varies over a larger range than it does 
in sand.
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Nomenclature

φ Porosity: pore volume/total volume = e/(1 + e)
e Void ratio: pore volume/solid volume = φ/(1 − φ)

σ Total stress: assumed to be lithostatic pressure
σ ′ Vertical effective stress: load supported by the grains 

(difference between lithostatic and pore pressure)
σ0, e0, φ0 Initial stress, void ratio, porosity: depositional values 

(at the seafloor)
σr, er, φr Residual stress, void ratio, porosity: values at max-

imum compression (minimum pore volume) without 
crushing sediment grains

φp Proportional Porosity = (φ − φr)/(φ0 − φr)

ep Proportional Void Ratio = (e − er)/(e0 − er)

Cc Compression Index (e.g., Long et al., 2011)
v Specific Volume (Butterfield, 1979)
g = log10(σ )

a = 1.0/(e0 − er)

b = −er/(e0 − er)

In order to build the best possible model of sediment parame-
ters, the modeled e − log10(σ

′) curve should fit observed data as 
closely as possible at all stresses. Therefore, the modeled relation-
ship must be concave upward, and produce only porosities which 
are physically possible. Butterfield (1979) achieved a concave up-
ward e − log10(σ

′) curve by setting specific volume (v = 1 + e) 
proportional to change in effective stress, producing the equation 
v = v0(σ

′)C , where v0 is the initial void ratio, and C is a fit-
ting parameter. Long et al. (2011) showed that this equation fit 
consolidation tests on samples from IODP Sites U1322 and U1324 
in the Gulf of Mexico better than the traditional geomechanical 
models (e.g., Eq. (1)) because it better mimicked the concave up-
ward behavior of the e − log10(σ

′) curve. However, the Butterfield
(1979) relationship still produces negative porosities at high ef-
fective stresses. Since porosity cannot reach negative values, the 
curvature of the true stress–strain curve must be fundamentally 
different from that represented by the Butterfield equation.

2. Model formulation

Our goal is to derive a better model for the virgin consoli-
dation curve by allowing Cc to vary with void ratio. Long et al.
(2011) suggest a linear relationship between Cc and void ratio (e). 
Such a relationship can theoretically produce negative porosities, 
which we wish to avoid. To determine a better functional form for 
Cc, we first make some of the same assumptions as these previ-
ous models: that the dominant method of porosity reduction due 
to increased vertical effective stress is by the re-arrangement of 
grains through rotation, sliding, and bending with no significant 
mineral precipitation, crushing, or melting. We define the deposi-
tional porosity, φ0, as the porosity at which the sediment falls out 
of suspension, which Dvorkin et al. (1999) refers to as the criti-
cal porosity. The vertical effective stress at φ0 is σ0, which is not 
equal to zero, but is very small. The particular value of σ0 is im-
portant for determining the starting point of a stress–strain curve, 
and is discussed in Section 3.2.

We define φr as the residual porosity, which is the porosity at 
which the grains have been re-arranged to their maximum pack-
ing efficiency. Beyond this limit, the dominant method of porosity 
reduction is by crushing, melting, or chemical alteration of indi-
vidual grains. We then define the proportional porosity, φp, as the 
fraction of the way from φ0 to φr, or equivalently for proportional 
void ratio, ep, from e0 to er;

φp = (φ − φr)/(φ0 − φr), ep = (e − er)/(e0 − er).

As our results will show, we have found empirically that the 
compression index is extremely well represented by the square 
root of the proportional void ratio;

Cc(e) = (ep)1/2 = [
(e − er)/(e0 − er)

]1/2
. (2)

We offer no physical justification for this functional form; it is 
entirely empirical. However, it offers a significant advantage over 
previous forms in that it is everywhere geologically reasonable. 
Neither negative nor infinite void ratios are ever encountered for 
any stress. (Equivalently, no porosity is ever less than 0 or greater 
than 100%.) Eq. (2) now gives us an expression for the slope at any 
point along the stress–strain curve.

Letting g = log10(σ
′), and putting Eq. (1) in differential form 

yields

de = −Cc(e)dg = −[
(e − er)/(e0 − er)

]1/2
dg

Substituting a = 1.0/(e0 − er) and b = −er/(e0 − er) produces

de = −(ae + b)1/2dg.

Accumulating terms of “e” on one side yields

dg = −(ae + b)−1/2de.

Integrating both sides yields

g = −2(ae + b)1/2/a + C,

where C is the constant of integration. To determine a value for 
C , we apply a boundary condition: at minimum void ratio e = er, 
making aer + b = 0. Therefore, C = g(er) = gr = log10(σ

′
r ). In other 

words, the constant of integration, C , is the log10 of the vertical 
effective stress required to reach the minimum void ratio. Substi-
tuting gr for C ,

g = gr − 2(ae + b)1/2/a

or

log10
(
σ ′) = log10(σr) − 2(ae + b)1/2/a (3a)

e = a−1[(a log10
(
σr/σ

′)/2
)2 − b

]
(3b)

e = 1

4(e0 − er)
log2

10

(
σr

σ

)
+ er (3c)

The initial condition of the system is at maximum void ratio (e =
e0), where ae0 + b = 1, g0 = gr − 2/a, and therefore

e = 1

4(e0 − er)

[
log10

(
σ0

σ

)
+ 2(e0 − er)

]2

+ er (4a)

Expanding and simplifying yields

e = 1

4(e0 − er)
log2

10

(
σ0

σ

)
+ log10

(
σ0

σ

)
+ e0 (4b)

Eqs. (3) and (4) are closed form expressions for vertical effective 
stress as a function of void ratio and vice versa. Only three param-
eters are required to span the spaces described in these equations, 
namely e0, er and either σ0 or σr. Relating e0 to σ0 will reduce 
the necessary parameters to two.
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