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Multi-scale failure of porous materials is an important phenomenon in nature and in material physics 
– from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key 
unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, 
based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on 
a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not 
been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis 
that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. 
We use new experimental datasets for the deformation of porous materials to infer the critical crack 
length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to 
failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the 
inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate 
forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, 
the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. 
Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure 
time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural 
failure events, with suitable scaling for the relevant inter-flaw distances.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All materials contain flaws with a large range of length scales, 
from kilometre-sized fractures in the crust (Hatton et al., 1994), 
to meter-sized cavities (Castro et al., 2002) and fractures in rocks 
and synthetic materials (Allègre et al., 1982), down to micro- and 
nano-pores and density fluctuations in thin-film glasses (Guyer 
and Dauskardt, 2004) and crystals. These flawed materials even-
tually rupture in catastrophic failure events when applied stresses 
become sufficiently large to produce system-spanning fractures 
(Sammis and Ashby, 1986). Recent efforts have converged and 
found that two observations dominate the physics of failure of 
these systems. First, the flaws in the system concentrate stress 
relative to the unflawed domains of the material and therefore 
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the flaw fraction in the material exerts a first-order control on 
the far-field stress required for macroscopic failure (Kemeny and 
Cook, 1986; Sammis and Ashby, 1986; Vasseur et al., 2013). Sec-
ond, the size of flaws and the inter-flaw length determine the 
extent to which the cracks that emanate from flaws will in-
terfere (Bažant, 2004; Sornette and Andersen, 1998). These two 
paradigms underpin all elastic models of rupture events in hetero-
geneous solids and predict that, as the material approaches macro-
scopic failure, the rate of energy released as acoustic emissions 
(AEs) by microscopic failure events accelerates (Kilburn, 2012;
Lockner et al., 1991; Scholz, 1968; Turcotte and Newman, 2003;
Vasseur et al., 2015; Voight, 1989). When first proposed, the find-
ing that these bulk-material accelerations in the rate of energy 
release or event number approaches a singularity that coincided 
with the failure time provided a tantalizing possibility that ma-
terial failure could be forecast accurately using indirect observa-
tions such as micro-earthquakes or AEs prior to wholesale rupture 
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Fig. 1. Stress around pores in 2D and 3D. The distances are normalized by the cavity radius a and the stress by the far-field applied stress σ1. (a) The total stress distribution 
around a circular pore in an infinite plate (2D) mapped out in the positive quadrant of the x–z plane as calculated by combining Eqs. (S1)–(S3). (b) The total stress distribution 
around a spherical pore in an infinite body (3D) mapped out in the positive quadrant of x–z plane as calculated by combining Eqs. (S4)–(S7). (c) The total stress resolved 
along the z-axis (θ = π/2) and along the x-axis (2D) or the x–y plane (3D) (θ = 0).

(Voight, 1989). Indeed a large effort has been expended in as-
sessing the utility of this tool for forecasting hazardous failure 
phenomena in nature (Bell et al., 2011; Bell and Kilburn, 2013;
Hao et al., 2016; Kilburn et al., 2017; Robertson and Kilburn, 2016;
Voight, 1988). However, the still-limited success of these methods 
(Bell et al., 2013) has highlighted complexities in the approach to 
failure of heterogeneous materials that must be addressed if fore-
casting tools are going to be of the widest utility.

2. Micromechanical models for the uniaxial deformation of 
porous materials

Here we present a linear elastic model to demonstrate quantita-
tively how stress is distributed around a circular (2D) or spherical 
(3D) cavity in an infinite solid and exposed to a far-field stress. 
Then we follow previous work to scale that concept to a porous 
body with finite dimensions in order to predict the failure stress 
of a porous material as a function of the porosity φ and the pore 
radius a. We focus on the uniaxial case in which far-field stresses 
are applied in one direction only, and later we discuss how our 
findings could be extended to more complex stress configurations 
in principle. Finally, we explore other characteristic length scales 
in natural materials that may be more relevant than the pore size; 
namely, the inter-pore and inter-particle distances.

2.1. The concentration of uniaxial applied stress around circular and 
spherical pores

First we use a linear elastic model for the stress distribution 
around a circular (2D) or spherical (3D) cavity. For the 2D case 
we opt for the solution credited to Kirsch (1898) and to Goodier
(1933) for the 3D case, repeated in variable completeness in sub-
sequent work (Jaeger et al., 2009; Soutas-Little, 1999) with which 
the stress components can be computed for each spatial position 
around a cavity of radius a. We use the Cartesian coordinate sys-
tem with the far-field stress applied in the z-direction and the 
centre of the pore positioned at (x, y, z) = 0. A line of length 
r away from the pore centre in any direction subtends an an-
gle with the z-axis of θ and an angle with the x- or y-axes of 
ψ . In what follows, we normalize each axis (x, y, z) and the ra-
dial direction r by a and the individual stress components τi j by 
the far-field applied stress σ1, yielding a coordinate system and 
stress tensor components for which a bar above the parameter de-
notes its normalized value. We introduce the 2D and 3D stress 
components in the supplementary file as Eqs. (S1)–(S3) and Eqs. 
(S4)–(S7).

In Fig. 1, we present the normalized stress as a colour map 
around a 2D circular cavity (Fig. 1a) and a 3D spherical cavity using 
ν = 0.25 (Fig. 1b), which is a first-order approximation for crustal 
rocks (assuming the two Lamé parameters are equal). The lobes 
of concentrated stress are compressive in the region of the solid 
surrounding the z-axis and are tensile in the region of the solid 
about the x-axis (2D) or the x–y plane (3D). It is in these lobes of 
concentrated stress that fractures would be most likely to initiate. 
For this reason, in Fig. 1c we additionally show the stress resolved 
along the z-axis (θ = π/2) and along the x-axis (2D) or the x–y
plane (3D) (θ = 0).

2.2. Approximate methods for predicting the stress required for rupture

The deformation of elastic porous media results in cracks that 
propagate from interfaces at which stress is locally concentrated 
relative to the far-field applied load (Sammis and Ashby, 1986). 
Sammis and Ashby (1986) present a static so-called pore-crack
model to compute the degree to which stress is concentrated 
around cavities (a cavity stress intensity factor K Ii ) and the de-
gree to which cracks that grow from those cavities interact (a crack 
interaction stress intensity factor K Iii ). Their solutions are cast as 
simple functions of the sample porosity φ, rendering them easy 
to use and to compare with measured data (Zhu et al., 2011). 
Where the pore-crack model is used, only the solution for 2D 
is usually compared with experimental data (Baud et al., 2014;
Zhu et al., 2011). Here we apply the pore-crack model (Sammis 
and Ashby, 1986) in uniaxial conditions where the sum of K Ii and 
K Iii is the total stress intensity K I .

When a far-field stress σ1 is applied (σ2 = σ3 = 0) onto a mate-
rial rupture begins only when the local stress σ exceeds σc . At this 
point a fracture can initiate to a distance c away from the pore or 
cavity at which distance σ = σc , and beyond which σ < σc . This 
distance c is the equilibrium crack length for the stress state at a 
given time and, defined in non-dimensional form as c = c/a. Then 
c as a function of a normalized stress σ = σ

√
πa/K Ic (where K Ic is 

the fracture toughness or critical stress intensity required for crack 
propagation in the solid) for the 3D and uniaxial case, is as follows 
(Sammis and Ashby, 1986)

σ =
(

0.62
√

c

(1 + c)4.1
+

√
2φ(1 + c)

π

)−1

(1)

where the first term on the right-hand side of Eq. (1) describes 
the growth of a crack from a single pore, while the second term 
is a crack-interaction term related to the porosity φ (see Sammis 
and Ashby, 1986 for full description). This model neglects time-
dependency and therefore it is implicitly assumed that the cracks 
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