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A coupled model for chemical diffusion and mechanical deformation is developed in analogy to the 
studies of poroelasticity and thermoelasticity. Nondimensionalization of the governing equations yields 
a controlling dimensionless parameter, the Deborah number, given by the ratio of the characteristic 
time for pressure relaxation and concentration homogenization. Using the Deborah number two types 
of plausible chemical zonation are distinguished, i.e. diffusion controlled, and mechanically controlled. The 
transition between these two types of chemical zonation is determined at the conditions where the 
Deborah number equals one.
We apply our model to a chemically zoned plagioclase rim in a spherical coordinate frame assuming 
homogeneous initial pressure. Using thermodynamic data, an experimentally derived diffusion coefficient 
and a viscous flow law for plagioclase, our numerical simulations show that up to ∼0.6 GPa grain-
scale pressure variation is generated during the diffusion–deformation process. Due to the mechanical–
chemical coupling, the pressure variations maintain the chemical zonation longer than predicted by 
the classical diffusion model. The fully coupled mechanical–chemical model provides an alternative 
explanation for the preservation of chemically zoned minerals, and may contribute to a better 
understanding of metamorphic processes in the deep Earth interior.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Chemically zoned minerals are important witnesses of the pres-
sure, temperature, time, and deformation (P–T–t–D) history of a 
rock. Numerical simulations of chemical diffusion processes in 
chemically zoned minerals have been proven useful in quantify-
ing the duration of metamorphic processes (e.g. Ague and Bax-
ter, 2007). During metamorphism, chemical diffusion and me-
chanical deformation can occur simultaneously, and in several re-
cent studies are considered as coupled (e.g. Milke et al., 2009;
Schmid et al., 2009; Scheidl et al., 2014; Tajčmanová et al., 2015). 
Assuming a spatially homogeneous pressure, inter or intra-granular 
chemical diffusion can be conveniently modeled as a single pro-
cess (Joesten, 1977; Lasaga, 1998). Such classical diffusion models 
are appropriate if the pressure heterogeneities are dissipated sig-
nificantly fast by mechanical deformation.

Non-lithostatic pressure arises in rocks that experience ex-
ternal shear deformation (Moulas et al., 2014; Schmalholz and 
Podladchikov, 2013; Schmid and Podladchikov, 2003) or elastic 
interactions among different mineral phases (Gillet et al., 1984; 
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Rosenfeld and Chase, 1961; Zhang, 1998; Angel et al., 2015). In fact, 
kilobar (kbar)-level residual pressure of mineral inclusions in many 
(ultra)-high-pressure rocks has been measured using laser Raman 
spectroscopy (e.g. Sobolev et al., 2000; Enami et al., 2007; Korsakov 
et al., 2009; Ashley et al., 2014). These studies document the 
preservation of grain-scale pressure variations at geological time 
scales owing to a slow viscous relaxation rate (Dabrowski et al., 
2015). Ignoring such pressure variations in a quantitative analysis 
of a microstructure can lead to errors in depth estimates that are 
comparable to the typical thickness of the continental crust. The 
magnitude of this error then influences our understanding of geo-
dynamic processes. Since the chemical and mechanical processes 
in rocks are coupled, it is important to have a rigorous quan-
tification approach to understand the interplay between the two 
processes.

Systematic petrological investigations have documented that 
there is a strong correlation between grain-scale pressure vari-
ations and the chemical, mineralogical, or textural signature 
(Moulas et al., 2015; Tajčmanová et al., 2014, 2015; Vrijmoed and 
Podladchikov, 2015; Zhong et al., 2017). In this contribution, we 
focus on the effect of grain-scale pressure variations on the chem-
ical zonation by extending the work of Tajčmanová et al. (2014, 
2015). In their study, the effect of an existing pressure gradient 
on the distribution of chemical components in a binary system 
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was investigated. They found that pressure variations can drive 
chemical diffusion, and maintain the compositional zoning under 
chemical equilibrium. Tajčmanová et al. (2014, 2015) used this 
model to explain how chemical zoning in a plagioclase rim can 
be maintained by a spatial variation in pressure at high temper-
ature above 800 ◦C, while the classical diffusion model predicts 
complete chemical homogenization within short amount of time 
(i.e. thousands of years). Their study focused on the consequence 
of a given heterogeneity in pressure on chemical redistribution but 
did not consider the potential opposite effect of chemical diffusion 
on mechanical deformation.

Here, we develop a system of equations that fully couple these 
two processes – chemical diffusion and mechanical deformation. 
The approach is analogous to the classical theories of poroelas-
ticity or thermoelasticity, which focus on the coupling of fluid 
flow to solid deformation, and heat conduction to solid defor-
mation, respectively. Both of them require the mass, momentum, 
energy conservation, and constitutive relations to relate differ-
ent physical state variables (Biot, 1956; Rice and Cleary, 1976;
Wang, 2000). We apply the coupled chemo-mechanical model to 
the plagioclase case study in Tajčmanová et al. (2014, 2015). We 
show that during chemical diffusion in a plagioclase grain, a gradi-
ent of pressure can be triggered due to the coupling effect and is 
maintained at geological time scale. This pressure gradient main-
tains the chemical zonation longer than expected using the clas-
sical diffusion model. It emphasizes the significance of mechanical 
deformation and provides an alternative explanation to the preser-
vation of chemical zoning in metamorphic or magmatic minerals 
at high temperatures.

2. Methods

The modeled material is treated as one continuum phase con-
taining two components A and B. The following derivations in a 
Cartesian coordinate frame are aimed at providing a general strat-
egy. The coordinate frame is subsequently modified to spherical 
to study the solutions of the coupled system in one-dimensional 
(radial) profiles. This simplification allows approximation of meta-
morphic microstructures of a host-inclusion environment. Temper-
ature is considered as spatially constant which is a reasonable 
assumption for grain-scale distances (<mm) over geological time. 
The model considers isotropic elastic moduli, viscosity and diffu-
sion coefficients.

2.1. Conservation of mass, concentration and momentum

The conservation of the total mass, concentration, and momen-
tum are presented using substantial (material) time derivatives and 
neglecting acceleration. Derivations for the following equations can 
be found in the Appendix.

dρ

dt
+ ρ

∂
⇀
vk

∂xk
= 0 (1)

ρ
dc

dt
+ ∂

⇀
qk

∂xk
= 0 (2)

∂σi j

∂x j
= 0 (3)

where ρ is the density ( kg
m3 ), c is the concentration (mass frac-

tion) of component A in a binary mixture (from 0 to 1), ⇀
vk is the 

velocity vector ( m
s ), t is time in (s), ⇀

qk is the chemical diffusion 
flux vector ( kg

m2 s
), and σi j is the Cauchy stress tensor. The nota-

tions i, j, k denote the coordinate indices. The Einstein summation 
is applied here, i.e. repeated indices imply summation. The diffu-
sion flux ⇀qi is defined as (see Tajčmanová et al., 2015):

⇀
qi = − ρ

RT
Dc̃(1 − c̃)

M A MB

c̃M A + (1 − c̃)MB

∂ξ

∂xi
(4)

where c̃ is the molar fraction, D is the inter-diffusion coefficient 
of the binary system ( m2

s ), M A, MB are the molar masses of the 
two components A and B ( kg

mol ), R is the gas constant ( J
K mol ), and 

T is the absolute temperature in Kelvin. The notation ξ is intro-
duced as the difference between the chemical potential μ of the 
two diffusing components:

ξ = μA − μB (5)

which has the unit of ( J
kg ). The driving force for diffusion is given 

by the gradient of the chemical potential difference ∂ξ
∂xi

(Hillert, 
2007, page 64; Tajčmanová et al., 2015).

2.2. Momentum balance and viscous rheology

The Stokes equation is formulated below using the force bal-
ance (Eq. (3)) and applying a linear viscous rheology for shear 
deformation (e.g. Ranalli, 1995). A spatially constant shear viscos-
ity is considered in the model.

∂σi j

∂x j
= ∂τi j

∂x j
− ∂ P

∂xi
= 2η

∂ε̇′
i j

∂x j
− ∂ P

∂xi
= 0 (6)

where the total stress σi j is composed of the deviatoric stress ten-
sor τi j and pressure P , which is positive in compression (σi j =
τi j − Pδi j). The Kronecker delta is denoted as δi j . The shear vis-
cosity is η (Pa s), and ε̇′

i j is the deviatoric strain rate tensor (s−1), 
which is by definition:

ε̇′
i j = ε̇i j − ε̇kk

δi j

3
(7)

where ε̇i j is the total strain rate tensor. The strain rate is concisely 
expressed using the gradient of velocity as:

ε̇i j = 1

2

(
∂

⇀
vi

∂x j
+ ∂

⇀
v j

∂xi

)
(8)

Inserting Eq. (7), (8) into Eq. (6), the momentum balance equation 
can be derived in a form containing velocity and pressure:

η

[
∂

∂x j

(
∂

⇀
vi

∂x j

)
+ 1

3

∂

∂xi

(
∂

⇀
vk

∂xk

)]
− ∂ P

∂xi
= 0 (9)

No viscous volumetric strain rate is considered in our model. 
The model can be compressible (for ∂

⇀
vk

∂xk
�= 0), and the compress-

ibility is introduced in the next section.

2.3. Constitutive relations: chemical and mechanical coupling

The specific Gibbs energy for a binary system can be expressed 
using intensive variables (Callen, 1985). Assuming isothermal con-
ditions and using Eq. (5), we get:

dg = vdP + μAdc + μBd(1 − c) = vdP + ξdc (10)

where g is the specific Gibbs energy in ( J
kg ), v is the specific vol-

ume ( m3

kg ). Legendre transformation is performed to construct the 
Korzhinskii’s potential � (Korzhinskii, 1959):

� = g − ξc (11)

Subsequently, taking the total differential of � and combing d�

with Eq. (10) gives:

d� = vdP − cdξ (12)
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