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Correlation analysis is omnipresent in paleoclimatology, and often serves to support the proposed climatic 
interpretation of a given proxy record. However, this analysis presents several statistical challenges, each 
of which is sufficient to nullify the interpretation: the loss of degrees of freedom due to serial correlation, 
the test multiplicity problem in connection with a climate field, and the presence of age uncertainties. 
While these issues have long been known to statisticians, they are not widely appreciated by the wider 
paleoclimate community; yet they can have a first-order impact on scientific conclusions. Here we use 
three examples from the recent paleoclimate literature to highlight how spurious correlations affect the 
published interpretations of paleoclimate proxies, and suggest that future studies should address these 
issues to strengthen their conclusions. In some cases, correlations that were previously claimed to be 
significant are found insignificant, thereby challenging published interpretations. In other cases, minor 
adjustments can be made to safeguard against these concerns. Because such problems arise so commonly 
with paleoclimate data, we provide open-source code to address them. Ultimately, we conclude that 
statistics alone cannot ground-truth a proxy, and recommend establishing a mechanistic understanding 
of a proxy signal as a sounder basis for interpretation.

© 2016 Published by Elsevier B.V.

1. Introduction

Inferring past climate conditions from proxy archives is a cen-
tral tenet of paleoclimatology. The calibration of paleoclimate prox-
ies is accomplished in two main ways: space-based calibrations 
and time-based calibrations (defined below). In space-based cali-
brations, the values of a proxy at different locations are calibrated 
to measured climate indicators at the same locations, as exempli-
fied by the calibration of paleothermometers in the core-top of 
marine sediments (e.g. Tierney and Tingley, 2014; Khider et al., 
2015). This approach is relatively forgiving of time uncertainties, as 
long as core-top values are broadly contemporaneous, in relation to 
the question being asked of the cores. In time-based calibrations, 
on the other hand, proxy timeseries overlapping with the instru-
mental era are calibrated against an instrumental target (e.g. Jones 
et al., 2009; Tingley et al., 2012), via correlation analysis or the 
closely-related linear regression.

Thus “ground-truthing” a proxy record often involves estab-
lishing that its correlation to an instrumental climate variable 
(whether local, regional, or global) is significant in some way. 
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Significance of correlations is most commonly assessed via a 
t-test, which assumes that samples are independent, identically-
distributed, and Gaussian. However, these criteria may not be 
fulfilled in paleoclimate timeseries due to their intrinsic proper-
ties (Ghil et al., 2002).

Indeed, the loss of degrees of freedom due to autocorrelation 
has long been known to challenge the assumption of indepen-
dence (Yule, 1926), though workarounds are known (e.g. Dawdy 
and Matalas, 1964). Non-Gaussianity may also prove an issue, es-
pecially for precipitation timeseries, though relatively simple trans-
formations may alleviate it (Emile-Geay and Tingley, 2016).

Additionally, correlating proxies with instrumental climate 
fields is a common way of establishing the ability of a proxy 
to capture large-scale climate information. Unfortunately when 
implemented as a mining exercise using a large, spatially grid-
ded dataset, test multiplicity becomes a problem. We will re-
view how this problem may be successfully circumvented us-
ing simple statistical approaches (Benjamini and Hochberg, 1995;
Storey, 2002).

Finally, the presence of age uncertainties may bring substan-
tial uncertainties to time-based correlations between records (e.g. 
Crowley, 1999; Wunsch, 2003; Black et al., 2016). We will show 
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a robust approach to quantifying age uncertainties and how they 
propagate to correlation and other analyses.

The article is structured as follows. In Section 2 we show 
the importance of considering autocorrelation in cross-correlation 
analyses. In Section 3, we briefly introduce the “test multiplicity” 
problem and the false discovery rate and show how it affects cor-
relations with a climate field. In Section 4, we introduce the effects 
of age uncertainties, how they influence the interpretation of a 
speleothem record, and how this compounds with the other two 
challenges. We finish with a discussion of the significance of these 
results, and propose strategies to mitigate these statistical issues 
going forward.

2. Challenge #1: serial correlation

2.1. Theory

The most common way to determine the significance of Pear-
son’s product-moment correlation involves a t-test. Student’s t dis-
tribution is fully determined by the number of degrees of freedom 
available in the sample (ν). For N independent samples, ν = N −2, 
but it may be considerably lower when this assumption is violated, 
leading to overconfident assessments of significance.

As an example, consider correlations between two timeseries 
x(t) and y(t) generated by autoregressive processes of order 1 
(a common timeseries model for serially correlated data; e.g. 
Emile-Geay, 2016, Chapter 8). Each process is evenly sampled 500 
times and their correlation coefficient is 0.13, which is significant 
at the 5% level assuming independence (hence, ν = 498). However, 
the lag-1 autocorrelation of each time series (φ) is 0.8, which is 
common for climate variables like temperature, as well as for many 
paleoclimate records, which tend to have a red spectrum (Ghil et 
al., 2002). This means that neighboring samples are highly depen-
dent, so the effective numbers of degrees of freedom, νeff , is much 
lower. This number may be estimated via the following relation 
(Dawdy and Matalas, 1964):

νeff = N
1 − φx · φy

1 + φx · φy
(1)

where φx , φy are the lag-1 autocorrelation coefficients of two time 
series x, y respectively.

Based on equation (1), when either lag-1 autocorrelation co-
efficient increases, the effective number of degrees of freedom 
decreases, and the p-value of the test increases. In this case, the 
effective number of degrees of freedom decreases from 498 to 99 
after considering the autocorrelation, and the p-value rises to 0.19, 
suggesting the correlation is no longer significant at the 5% level. 
Fig. 1 shows how the p-value and the degrees of freedom change 
for a time series of 500 samples and a fixed correlation of 0.13 just 
by changing the autocorrelation coefficients (φx = φy = φ for sim-
plicity). As the autocorrelation increases, the p-values increases, 
and the degrees of freedom decrease. When all samples are inde-
pendent (φx = φy = 0), the p-value is far smaller than 5%. When 
the autocorrelation increases to about 0.65, the p-value becomes 
larger than 5%, making the correlation insignificant at this level. 
The problem only worsens as φ increases, and as we shall see in 
this article, values above 0.8 are quite typical of paleoclimate time-
series.

Autocorrelation is thus a very serious challenge, which alone 
can substantially raise the bar of a significance test; if ignored, it 
may lead to overconfident assessments of significance.

2.2. Application

To see this effect at work in the real world, consider the ex-
ample of Proctor et al. (2000), who used the band width in a 

Fig. 1. The p-value and numbers of degrees of freedom (DOF) of the correlation 
(0.13) between two AR(1) time series (500 samples each) with the changing au-
tocorrelation φ. The green dashed line is the 5% criteria for 5% level significance 
test.

stalagmite (SU-96-7) from Uamh an Tartair (northwest Scotland) 
to reconstruct the North Atlantic Oscillation (NAO). The record was 
dated by counting annual bands, with only 17 bands as double an-
nual bands, implying a counting error less than 20 years. When 
compared to the whole length of the entire 1087-year-long record, 
this amounts to only 2%. Therefore, the influence of age uncertain-
ties can be neglected to first order.

The climatic interpretation of the stalagmite was based on the 
high correlation between the band width and the temperature/pre-
cipitation ratio (r = 0.80) as well as the correlation between band 
width and the winter NAO index (r = −0.70) by using decadally-
smoothed data. Here we apply the effective degrees of freedom 
in testing the significance of correlation, since the correlation sig-
nificance may be biased by autocorrelation due to the effect of 
smoothing. Also, inherent aspects of these records leads to compli-
cations using statistics based on normally distributed populations, 
as the band width distribution of the stalagmite record is bimodal 
instead of normal. The t-test for correlation significance assumes 
that both time series are normally distributed, negating its use as 
a statistical tool unless appropriate transformations are made.

Considering the autocorrelation of the smoothed data, the high 
correlation between the band width of stalagmites and the tem-
perature/precipitation ratio (T/P) in the instrumental period is not 
significant at 5% significance level (the adjusted p-value is 0.44). 
The correlation between the band width of stalagmites and winter 
NAO is also not significant, because of high autocorrelations of the 
smoothed time series of the band width (φ = 0.99), T/P (φ = 0.99) 
and winter NAO (φ = 0.95). However, this result is based on an as-
sumption of normality, and as discussed above, the distribution of 
the band width in this speleothem is bimodal, hence non-normal 
(not shown). Thus, transforming the non-normal series to normal-
ity (Emile-Geay and Tingley, 2016) is necessary. After this transfor-
mation, the correlations pass the significance test at the 5% level: 
for the correlation between the band width and T/P, νeff is 93 
(N = 115), and the p-value is 3 ×10−3; for the correlation between 
the band width and winter NAO, νeff is 95 (N = 126), and the 
p-value is 4 × 10−2, just under the 5% threshold. While we con-
clude that the original interpretation is supported by our analysis, 
the authors reached this conclusion thanks to error compensation, 
potentially undermining their point.

We note, however, that the decrease of DOF due to smoothing 
was considered when this reconstruction was used for studying 
the long-term variability of the NAO in the high-profile study of 
Trouet et al. (2009).
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