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A B S T R A C T

In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In
this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine
(PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the
Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic
layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams
and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility
mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are
2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while re-
maining 50% as testing set. The performance of these techniques has been evaluated and the computational
results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic
curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained
from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness
of this technique to problem of landslide susceptibility mapping where training data is very less. However, these
techniques can be used for satisfactory determination of susceptible zones with these inputs.

1. Introduction

Natural disasters like landslides, earthquakes, flash floods etc.,
happen very frequently in mountainous regions especially in
Himalayas. They cause huge damage to the property and economy of
the region. Over the few decades, several predictive models have been
used for landslide susceptibility mapping such as statistical technique
(Guzzetti et al., 1999; Lee and Pradhan, 2007; Akgun and Türk, 2010)
and probabilistic models (Gokceoglu et al., 2000; Lee and Pradhan,
2006; Pourghasemi, Pradhan et al., 2013). However, it is very difficult
to accurately predict the behavior of landslides. Recently, many ma-
chine learning techniques have been put forward to predict the occur-
rence of landslides. Among them, Artificial Neural Networks (ANNs) are
one of the most common methods used in landslide prediction. Unlike
other statistical models, ANNs are non-parametric models and are
capable of approximating any non-linear function arbitrarily without
any prior assumption about the given dataset, the dimension of the
input space and the input space environment (Hornik et al., 1989;
Haykin and Lippmann, 1994). Various empirical studies shows that
ANNs are useful techniques for landslide susceptibility mapping (Lee

et al., 2004; Pradhan and Lee, 2010a,b), but they suffer from a number
of shortcomings like the demand of a large number of controlling
parameters, the choice of the number of hidden layers, over-fitting
problem and the non-convex optimization problem which may lead to
local minima.

Recently, new machine learning approaches such as Support Vector
Machines (SVMs) (Cortes and Vapnik, 1995), have been developed that
were tried to predict the landslide occurrences. SVMs were developed
by Cortes & Vapnik based on the Structural Risk Minimization (SRM)
principle (Vapnik, 1995; Vapnik and Vapnik, 1998), which has been
proved to be superior to traditional Empirical Risk Minimization (ERM)
principle, used by conventional neural network techniques. SRM tries to
minimize an upper limit on the expected risk, whereas ERM minimizes
the error on the training data. This difference in approach equips SVM
with better generalization ability. In SVMs, the classification problem is
formulated as convex quadratic optimization problem, and the solution
of this problem is always a global optimal solution rather than local
optimal solution. Over fitting in SVM is less as compared to empirical
based approaches and also has better empirical performance. Due to
these characteristics, SVMs are becoming more prominent alternatives
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to a classification problem in many domains (Pang et al., 2002; Zhou
et al., 2004; Moguerza and Muñoz, 2006; Brenning, 2009; Ruppert
et al., 2009). Specifically, SVMs have been used in landslide suscept-
ibility mapping (Yao et al., 2008; Yilmaz, 2010; Pourghasemi, Jirandeh
et al., 2013; Pradhan, 2013) and is found to show higher performance
against other learning paradigms. However, improving the correctness
and efficiency of landslide susceptibility mapping still remains the
premier subject of concern. In order to improve the efficiency, Fung &
Mangasarian introduced simple and computationally fast proximity
based classifier known as the Proximal Support Vector Machine (PSVM)
(Fung and Mangasarian, 2001). In PSVMs, the solution of classification
problem is obtained from solving a set of linear equations instead of
quadratic problem, this decreases the computational time. The em-
pirical findings also demonstrate that PSVM is much faster than SVM-
Light (Joachims, 1999) and LS-SVM. Furthermore, Keerthi and DeCoste
(2005) have given more efficient and scalable technique for training L2-
SVMs, a Modified Finite Newton (L2-SVM-MFN) method for fast solu-
tion of large scale linear SVMs. Hence many SVM techniques have been
developed and their applicability in the area of landslide susceptibility
mapping needs to be carried out. Moreover in the Himalayan terrain,
where landslide phenomena is very common, the model that have been
applied include conventional methods (Sarkar et al., 1995; Rautela and
Thakur, 1999), statistical methods (Saha et al., 2005), logistic regres-
sion (Mathew et al., 2009; Devkota et al., 2013), Frequency Ratio
(Anbalagan et al., 2015), Artificial Neural Network (ANN) (Arora et al.,
2004; Kanungo et al., 2006), Analytic Hierarchy Process (AHP), Fuzzy
methods (Kanungo et al., 2006; Kumar and Anbalagan, 2016), etc.
(Shukla et al., 2016). Many of these works for LSZ mapping employ
rating system based on the expertise experience which tend to be de-
pendent on the knowledge of expert or mapping geomorphologists and
less on the learning capabilities from the data provided, especially the
utilization of the machine learning SVM techniques. Hence in this study
three different machine learning models namely SVM, PSVM and L2-
SVM-MFN have been applied and compared for mapping the landslide
susceptibility in parts of Garhwal Himalaya, India.

The rest of the paper is structured in various sections. In Section 2,
brief description is given about the models that have been used namely
SVM, PSVM and L2-SVM-MFN. The details about the study area and
experimental data including training and testing is explained in
Section 3. Section 4 describes the data preparation, model selection for
preparation of LSZ. The results obtained are explained in Section 5,
which is also evaluated based on the testing dataset. Finally this work is
concluded in Section 6.

2. Methodology

2.1. Support Vector Machine

SVM is a binary classification problem, of classifying m data samples
in the n dimensional real space Rn, denoted by data matrix A, data
sample xi is the ith row of A. The membership of each point xi can be
labeled as yi ∈{1,−1} or a diagonal matrix Y with yi along its diagonal.
The data points can be expressed by

+ ≥ = +x w b y. 1 1i i (1)

+ ≤ − = −x w b y. 1 1i i (2)

The distance between planes (1) and (2) is known as ‘margin’. The
optimal hyperplane f(w,b), which maximizes the margin is defined as

+ = ∈ ∈w x b w R b R0, ,T n (3)

where w is normal to the optimal hyperplane (3), termed as weight
vector and b is known as bias. The optimal hyperplane can be obtained
by maximizing the margin
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where C is the regularization parameter and ξi is the non-negative slack
variables for i=1,…,m. The above formulation of Eq. (4) is the
Quadratic Programming (QP) optimization problem with linear con-
straints which can be solved by using standard QP solver. The com-
putation cost of problem (4) is O(m3). Thus, the time required to train a
classifier is high and it increases polynomially as the training pattern
increases.

2.2. Proximal Support Vector Machine

Fung and Mangasarian (2001) proposed simple and fast version of
standard SVM known as Proximal Support Vector Machine (PSVM). The
standard SVMs formulation (Eq. (4)) is modified in two ways. First,
inequality constraints are replaced by equality constraints. Second, the
bias term b is also regularized with w, which is the margin between the
bounding planes that gets maximized with respect to both w and b in-
stead of w. In PSVM, classification problem is formulated as
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The nature of optimization problem (Eq. (5)) is changed after these
two simple modifications in Eq. (4). Note that Vapnik's SVMs (Eq. (4))
penalize slacks (ξi) linearly while PSVM penalize slacks quadratically
(ξi

2). Problem (5) has strong convex quadratic objective function with
equality linear constraints. The solution of problem (5) can be obtained
analytically, whereas, it is not possible in standard SVM.

Formulation (5) is the Quadratic Programming (QP) problem with
linear constraints, is solved using Karush Kuhn Tucker (KKT) necessary
and sufficient optimal conditions. The solution of Eq. (5) for w and b
involves the inversion of massive m×m matrix. Inversion of this mas-
sive matrix can be done by using Sherman-Morrison-Woodbury for-
mulation (Parlett, 1980), which converts it into much smaller dimen-
sion matrix of the order (n+1)×(n+1). The expression for w and b is
given as follows:
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where M=[Ae]
After obtaining w and b, the new data point (test) is classified using

the optimal decision surface as given by: f(x)= sign(wTx+b).
If the value of f(x) is positive (> 0), the new data point assigned to

class 1, otherwise it is labelled as class −1.

2.3. Finite Newton method for Support Vector Machine (MFN-SVM)

Mangasarian (2002) developed a finite Newton method for L2-SVMs
which is computationally fast and also considers the sparsity property
of SVMs. Furthermore, Keerthi and DeCoste (2005) modified this finite
Newton method to transform it into a fast and scalable technique for
solving large scale linear problems, called a modified finite Newton
method for linear L2-SVMs (L2-SVM-MFN). L2-SVM solves the following
optimization problem:
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The problem formulation (7) is converted into an equivalent for-
mulation as follows:
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