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The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil
types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and
conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This re-
search aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression
and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder,
great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to deter-
mine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different ap-
proaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a
geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches,
the best results were obtained using the combination of terrain attributes and the geomorphologymap, although
differences between the scenarios with and without the geomorphology map were not significant. Employing
the geomorphology map increased map purity and the Kappa index, and led to a decrease in the ‘noisiness’ of
soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and subor-
der levels); however, random forest showedbetter performance at lower taxonomic levels (great group and sub-
group levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number
of training observations. The conventional soil mapping method produced a map with larger minimum polygon
size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the con-
ventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger aver-
age polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map
purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60),
and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in
the study area. The multinomial logistic regression method was identified as the most effective approach
based on a combined index of map purity, map information content, and map production cost. The combined
index also showed that smaller sample size led to a preference for the order level, while a larger sample size
led to a preference for the great group level.
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1. Introduction

Soil information of good quality and high spatial resolution is essen-
tial for adequate support of land use management practices, precision
agriculture, and ecosystem research. In spite of more than 50 year of
soil survey history in the world, in Iran there are just fewmaps at scales
appropriate for land use planning and agricultural practices. As an ex-
ample, the conventional soil map of Iran (1:1,000,000) recently was
prepared by the Soil and Water Research Institute of Iran
(Mohammad, 2000; Banaei et al., 2005) based on landform delineations

of themain physiographic regions, is not sufficiently informative (Hengl
et al., 2007). Detailed maps supporting many applications, however,
exist in some countries with soil maps at spatial resolutions of 100 m
(The Netherlands; De Vries et al., 2003; Kempen et al., 2015), 10 m
(one-third of Germany; Lösel, 2003), 100–400 m (Germany;
McBratney et al., 2003) and 200–500 m (France; King et al., 1999).
Therefore, it is necessary for Iranian soil scientists and decision makers
to produce soil maps at finer scales that provide more detailed
information.

Conventional methods of soil mapping are currently considered to
be ineffective to produce detailed soil maps at a reasonable cost and
time (Kempen et al., 2012). Digital soil mapping (DSM) is a powerful
technique which is increasingly applied by soil scientists and
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environmentalists to map soil types and/or properties using ancillary
data (McBratney et al., 2003; Lagacherie and McBratney, 2007). These
ancillary data, termed environmental covariates, can be obtained from
digital elevation models (DEM), satellite imagery (remote sensing
data), maps of geology and geomorphology, and legacy soil maps (cate-
gorical maps) (Krasilnikov et al., 2011).

The basis of DSM is the application of pedometric techniques that
predict the spatial distribution of soil types and soil properties (Wulf
et al., 2015). Here, we focus on making maps of soil types because
these have been mapped at incomplete coverage until now and the de-
sire exists to finalize soil mapping in the most economically feasible
way. Recently, several novel models have been developed to produce
soil type maps from profile observations by utilizing auxiliary data
(Nelson and Odeh, 2009; Heung et al., 2014; Brungard et al., 2015).
Many such methods have been investigated for digital soil mapping of
soil types, including Random forest (RF) (Pahlavan Rad et al., 2014;
Brungard et al., 2015), Multinomial logistic regression (MLR)
(Abdel-Kader, 2011; Jafari et al., 2012; Kempen et al., 2012; Brungard
et al., 2015), Artificial Neural Networks (Jafari et al., 2013; Brungard et
al., 2015), Support Vector Machine (Kovačević et al., 2010), Nero-
Fuzzy approach (Viloria et al., 2016), and Genetic Algorithms (Nelson
and Odeh, 2009).

DSM models are divided into simple, intermediate, and complex
models (Brungard et al., 2015) based on their interpretability and the
number of parameters required. In the present study, two DSMmodels
including RF (a complex model), MLR (a simple model), and the con-
ventional soil mapping method were compared for predicting soil
types. RF and MLR compared favourably to other methods in earlier
studies in Iran (Jafari et al., 2013; Pahlavan Rad et al., 2014).

RF can be regarded as an ensemble of classification and regression
trees (CART) which are aggregated to provide the final prediction
(Breiman et al., 1984; Breiman, 2001; Cutler et al., 2007). RF has several
advantages over other statisticalmodelling approaches (Breiman, 2001;
Liaw andWiener, 2002). Its input and output variables can be both con-
tinuous and categorical (Grimm et al., 2008). Moreover, RF has the ad-
vantage of incorporating ‘randomness’ into its predictions through
reiterative bootstrap sampling and randomized variable selection
when generating each decision tree (Heung et al., 2014). The RF algo-
rithm is considered a powerful modelling technique for predicting soil
types because (i) it is quite robust to noise in predictors, (ii) it shows
no over-fitting, (iii) it produces predictions with low bias and low vari-
ance, and (iv) since it is also fairly fast, it does not require the pre-selec-
tion of variables (Díaz-Uriarte and De Andres, 2006; Prasad et al., 2006;
Wiesmeier et al., 2011). RF also identifies themost important covariates
(Hua et al., 2005; Archer and Kimes, 2008).

Abdel-Kader (2011) reported that the MLR model is the most fre-
quently used statistical model for spatial prediction of soil types and
spatial modelling in land use and ecology studies (Rhemtulla et al.,
2007; May et al., 2008; Suring et al., 2008). However, in recent
years only some studies have used MLR for digital soil mapping
(Abdel-Kader, 2011; Jafari et al., 2012; Kempen et al., 2012).

DSM and CSM approaches are similar in that they both make use of
relationships between soil properties and more readily observable land
surface properties (shape, position, and reflectance). Conventional soil
maps are limited by the scale of the base map, their inability to repre-
sent continuous soil classes and spatial variation (Roecker et al.,
2010). Production of maps using CSM techniques is also labour-inten-
sive and expensive. DSM-based maps suffer less from these limitations,
thus DSM is generally assumed to be more efficient than CSM (Kempen
et al., 2012).

Although several papers have been published on the benefits of DSM
compared to CSM in recent years, fewexamples exist that compareDSM
techniques with CSM approaches for predicting soil types in the same
area, especially in arid and semi-arid regions. The objective of this
study, therefore, was to compare two different DSM techniques (MLR
and RF) with a conventional soil survey for producing soil maps at

different taxonomic levels in a semiarid region of Iran. This comparison
assessed not just map accuracy, but also information content and pro-
duction cost, with the purpose of selecting the most efficient method
as a function of the taxonomic level of the maps. Because results may
depend on sampling density, we evaluated the effect of three different
sample sizes on our conclusions.

2. Materials and methods

2.1. Description of the study area

The study area is located between 51° 19′ 9″ to 51° 20′ 45″ E longi-
tude and 31° 41′ 00″ to 32° 00′ 00″N latitude, and area covering approx-
imately 86,000 ha in the Borujen region, Chaharmahal-Va-Bakhtiari
Province, Central Iran (Fig. 1). The mean annual precipitation is
255 mm, mean annual temperature is 10.7 °C, and mean elevation of
the selected area is 2277m a.s.l. The main land uses in this area include
irrigated wheat cropping, dryland farming, and pasture. According to
the US Soil Taxonomy (Soil Survey Staff, 2014), the study area has a
Xeric soil moisture regime and a Mesic soil temperature regime. Major
landscape units in the study area consist of mountains, hills, piedmonts,
and lowlands.

2.2. Soil sampling scheme and profile description

The soil sampling scheme was carried out by applying the condi-
tioned latin hypercube sampling (Minasny and McBratney, 2006) al-
gorithm using Matlab software (MathWorks, 2009) with all
covariates mentioned in Section 2.3 (Table 1). Location coordinates
of 100 soil profiles were acquired by latin hypercube sampling and
25 legacy profiles were added to our dataset. Fig. 2 shows the distri-
bution of the soil profiles described in the study area. All locations
were excavated to a depth of 100–150 cm, described, sampled,
analysed, and classified up to the subgroup level of the US Soil Tax-
onomy (Soil Survey Staff, 2014).

2.3. Environmental covariates

Environmental covariates were represented by categorical maps of
geomorphology and geology (scale of 1:100,000), by quantitative
maps representing topographic attributes, and by remote sensing
data. Topography and parent material are the main soil forming factors
in arid and semi-arid regions (Florinsky et al., 2002; Tajik et al., 2012;
Mehnatkesh et al., 2013). Therefore, to obtain the topographic attri-
butes, we downloaded a DEM with the cell size of 30 × 30 m derived
from the Aster GDEM database (Ministry of Economy, Trade and
Industry of Japan and the National Aeronautics and Space
Administration, 2009). The terrain attributes obtained from theDEM in-
cluded elevation, the topographic wetness index, the SAGA (System for
Automated Geoscientific Analysis) wetness index, a multi-resolution of
ridge top flatness index, a multi-resolution valley bottom flatness index
(Gallant and Dowling, 2003), curvature, profile curvature, plan curva-
ture, aspect, and slope (Table 1).

Remote sensing auxiliary variables included the normalized differ-
ence vegetation index (NDVI; Boettinger et al., 2008), the ratio vegeta-
tion index (Pearson and Miller, 1972), the perpendicular vegetation
index (Richardson and Wiegand, 1977), the clay index (Boettinger et
al., 2008), and the soil adjusted vegetation index (SAVI; Huete, 1988).
These indices were derived from the Landsat Enhanced Thematic Map-
per acquired in 2008 (U.S. Geology Survey, 2004). All extracted environ-
mental covariates were used in the latin hypercube sampling scheme
and soil type prediction (Table 1). The SAGA GIS was used to derive en-
vironmental covariates (Olaya, 2004).
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