
Neodymium isotopes and concentrations in aragonitic scleractinian
cold-water coral skeletons - Modern calibration and evaluation
of palaeo-applications

Torben Struve a,b,⁎, Tina van de Flierdt a, Andrea Burke c,d, Laura F. Robinson c,e, Samantha J. Hammond f,
Kirsty C. Crocket a,g, Louisa I. Bradtmiller c,h, Maureen E. Auro c, Kais J. Mohamed i, Nicholas J. White j

a Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
b The Grantham Institute for Climate Change and the Environment, Imperial College London, Exhibition Road, London SW7 2AZ, UK
c Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA
d Department of Earth Sciences, Irvine Building, University of St Andrews, St Andrews KY16 9AL, Scotland, UK
e School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
f Department of Environment, Earth and Ecosystems, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
g SAMS, Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
h Environmental Studies Department, Macalester College, 1600 Grand Avenue, St. Paul, MN 55105, USA
i Departmento Geociencias Marinas y Ordenación del Territorio, Facultad de Ciencias del Mar, Universidad de Vigo, 36310 Vigo, Spain
j Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK

a b s t r a c ta r t i c l e i n f o

Article history:
Received 23 September 2016
Received in revised form 21 January 2017
Accepted 24 January 2017
Available online 27 January 2017

Cold-water corals (CWCs) are unique archives of mid-depth ocean chemistry and have been used successfully to
reconstruct the neodymium(Nd) isotopic composition of seawater fromanumber of species. High and variableNd
concentrations in fossil corals however pose the question as to how Nd is incorporated into their skeletons.
We here present new results on modern specimens of Desmophyllum dianthus, Balanophyllia malouinensis, and
Flabellum curvatum, collected from the Drake Passage, and Madrepora oculata, collected from the North Atlantic.
All modern individuals were either collected alive or uranium-series dated to be b500 years old for comparison
with local surface sediments and seawater profiles.Modern coralNd isotopic compositions generally agreewith am-
bient seawater values, which in turn are consistent with previously published seawater analyses, supporting small
vertical and lateral Nd isotope gradients inmodernDrake Passagewaters. TwoBalanophylliamalouinensis specimens
collected live however deviate by up to 0.6 epsilon units from ambient seawater.We therefore recommend that this
species should be treated with caution for the reconstruction of past seawater Nd isotopic compositions.
Seventy fossil Drake Passage CWCs were furthermore analysed for their Nd concentrations, revealing a large
range from 7.3 to 964.5 ng/g. Samples of the species D. dianthus and Caryophyllia spp. show minor covariation
of Nd with 232Th content, utilised to monitor contaminant phases in cleaned coral aragonite. Strong covariations
betweenNd and Th concentrations are however observed in the species B.malouinensis andG. antarctica. In order
to better constrain the source and nature of Nd in the cleaned aragonitic skeletons, a subset of sixteen corals was
investigated for its rare earth element (REE) content, as well as major and trace element geochemistry. Our new
data provide supporting evidence that the applied cleaning protocol efficiently removes contaminant lithogenic
and ferromanganese oxyhydroxide phases. Mass balance calculations and seawater-like REE patterns rule out
lithogenic and ferromanganese oxyhydroxide phases as a major contributor to elevated Nd concentrations in
coral aragonite. Based onmass balance considerations, geochemical evidence, and previously published indepen-
dent work by solid-state nuclear magnetic resonance (NMR) spectroscopy, we suggest authigenic phosphate
phases as a significant carrier of skeletal Nd. Such a carrier phase could explain sporadic appearance of high Nd
concentrations in corals and would be coupled with seawater-derived Nd isotopic compositions, lending further
confidence to the application of Nd isotopes as a water mass proxy in CWCs.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Aragonitic scleractinian cold-water corals (CWCs) are abundant in
regions where availability of other palaeoceanographic archives is
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limited, such as the mid-depth North Atlantic (e.g., Frank et al., 2004;
Robinson et al., 2007) or the mid-depth Southern Ocean (e.g., Burke et
al., 2010; Thiagarajan et al., 2013;Margolin et al., 2014). Their skeletons
can be dated accurately byuranium-series disequilibrium (e.g., Edwards
et al., 1987; Cheng et al., 2000; Robinson et al., 2006), and growth rates
from 0.5 to 2 mm/year in Desmophyllum dianthus (Risk et al., 2002;
Adkins et al., 2004) and up to 26 mm/year in Lophelia pertusa (Gass
and Roberts, 2006; recently synonymised to Desmophyllum pertusum,
Addamo et al. 2016) can provide for high resolution geochemical ar-
chives (e.g., Adkins et al., 1998; Copard et al., 2012; Montero-Serrano
et al., 2013; Wilson et al., 2014; Chen et al., 2015; Hines et al., 2015;
Lee et al., 2017).

A powerful proxy to constrain past water mass changes is the neo-
dymium (Nd) isotopic composition of seawater, which has been ex-
tracted from various marine archives (e.g., van de Flierdt and Frank,
2010), including CWCs (van de Flierdt et al., 2006a; Robinson and van
de Flierdt, 2009; Colin et al., 2010; Copard et al., 2011, 2012; López
Correa et al., 2012; Montero-Serrano et al., 2011, 2013; Wilson et al.,
2014).While the proxy has been calibrated successfully in bothmodern
colonial (reef - building) and solitary corals (van de Flierdt et al., 2006a;
Copard et al., 2010, van de Flierdt et al., 2010), there are a number of
questions that still need addressing. Firstly, the global calibration effort
by van de Flierdt et al. (2010) was conducted on museum specimens,
which were U-Th dated to be between 0 and 377 years old, with two
ages however ranging back to the middle and early Holocene. Further-
more, coral Nd isotope results were compared to the most proximal
site in the ocean where seawater results were published from the
same water mass. In some cases, this was up to 2000 km away from
the site of coral collection. A more direct calibration was performed by
Copard et al. (2010), who analysed 13 corals collected alive for their
Nd isotopic composition. Five of which were directly comparable to
nearby seawater measurements. There is still a need to expand the cur-
rent calibration to include a wider range of coral samples collected alive
for comparison with ambient seawater.

Another point that needs revisiting for the application of Nd isotopes
in CWCs as a palaeo watermass proxy is the observation of elevated Nd
concentrations in thoroughly cleaned fossil coral skeletons (e.g., Crocket
et al., 2014). Pioneering calibration studies showed that Nd concentra-
tions in modern CWC specimens of ≤42.7 ng/g (Copard et al., 2010;
van de Flierdt et al., 2010) are similar to observations in shallow-
water corals (SWC), i.e., ≤55.5 ng/g (Shaw and Wasserburg, 1985;
Sholkovitz and Shen, 1995; Akagi et al., 2004; Wyndham et al., 2004).
Moreover, Copard et al. (2010) showed a weak dependence of Nd con-
centrations in modern specimens with water depth, qualitatively in
agreement with the behaviour of dissolved Nd in seawater. Fossil spec-
imens however revealed that Nd concentrations in cleaned aragonite
can be significantly higher than cited above (up to 612 ng/g in Crocket
et al., 2014 and 772 ng/g in Wilson et al., 2014), which has been specu-
lated to result from incomplete removal of contaminant phases (Copard
et al., 2010; Crocket et al., 2014). Colin et al. (2010) ruled out contribu-
tions from ambient sediments as no systematic relationship between
sediment and coral Nd isotopic compositions could be observed
downcore. Crocket et al. (2014), on the other hand, performedmass bal-
ance calculations to show that contamination from ferromanganese
oxyhydroxide phases can account for a maximum of 27% of observed
Nd concentration in cleaned aragonite, with no resolvable effect on
the Nd isotopic composition. However, as most modern and fossil
CWCs showNd concentrations in excess of what is predicted from inor-
ganic aragonite precipitation experiments (Terakado and Masuda,
1988; ~6–11 ng/g) it is necessary to identify the nature of skeletal Nd.

In this paper we present (i) a new Nd isotope calibration of live
CWCs and local seawater from the Drake Passage and a location close
to Iceland (Fig. 1), and (ii) a multi-element investigation to identify
the dominantNd carrier phase in CWC skeletons. Taken together our re-
sults improve the robustness of the Nd isotope signal extracted from
(fossil) aragonitic CWC skeletons.

2. Samples

2.1. Seawater

In order to compare coral data and ambient seawater, three
seawater profiles were collected for 10 to 12 depths each during
NBP0805 (April to May 2008) on the R/V Nathaniel B. Palmer in the
Drake Passage using the shipboard CTD system equipped with PVC
Niskin bottles (Fig. 1 and Table 1). Ten litre samples were transferred
from Niskin bottles into acid cleaned cubitainers using Tygon® tubing.
Unfiltered samples were acidified to pH b 2 onboard using high purity
HCl. Sampling stations were located in deep waters off Burdwood
Bank (north of the Subantarctic Front), off the southern end of the
Shackleton Fracture Zone (near the southern boundary of the ACC),
and near Sars and Interim seamounts (near the Polar Front; Figs. 1
and 2). All majorwatermasseswere sampled: surfacemixed layer, Sub-
antarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW),
Upper Circumpolar Deep Water (UCDW), and Lower Circumpolar
Deep Water (LCDW) mixing with South Pacific Deep Water (SPDW)
and Weddell Sea Deep Water (WSDW) at depth (Fig. 2).

2.2. Sediments

Sediment samples were collected during NBP0805 and NBP1103
(May to June 2011) on the R/V Nathaniel B. Palmer from a number of lo-
cations across the Drake Passage and at water depths between 333 and
4395 m (Figs. 1 and 2, Table 2). Coring was successful during NBP1103
at Burdwood Bank (Kasten core KC08, 333 mwater depth), Interim sea-
mount (Kasten core KC77, 3095 m) and at the WAP margin (Box core
BC63, 597 mwater depth). During NBP0805 small amounts of sediment
samples were collected using a minicorer attached to the CTD to recover
sediments from 4221 and 4395mwater depth near Sars and the SFZ, re-
spectively. Additional gravel was collected from two dredges (DR18 and
DR35; Table 3) at SFZ (2392m) and Sars seamount (695m; Figs. 1 and 2,
Table 2). Samples were taken from respective top sections where possi-
ble (i.e., not applicable to dredge samples; Table 2). The lithology of the
different samples is very heterogeneous reflecting the different deposi-
tional environments, but also different sampling methods; for example
dredged sediments contain rock fragments. KC08 is characterised as
quartz sand, including some darker minerals with an overall slightly
green overgrowth. Sediment samples from Sars (DR35 and CTD04
minicore containing mud with pieces of rock) and Interim (KC77,
sand) seamounts are dominated by light-brown and grey colours indi-
cating unusually high carbonate contents. Sediments from SFZ (DR18
and CTD03 minicore) are grey to brown and contain mostly mud and
rock fragments. BC63 sediments from the WAP contain various grain
sizes in a grey-brown mud matrix.

2.3. Cold-water corals

Modern solitary coral specimens of Desmophyllum dianthus (n=3),
Balanophyllia malouinensis (n=4) and Flabellum curvatum (n=1; Fig.
3) were collected on Burdwood Bank by dredging and trawling during
NBP0805 (n = 6 from one Blake Trawl at 816 m water depth) and
LMG0605 (May–June 2006) on the R/V Laurence M. Gould (n = 2;
both B. malouinensis; one from 120 m water depth and one from
854mwater depth; Figs. 2 and 3; Table 4). It should be noted that ‘mod-
ern samples’ in this case includes specimens collected alive (n=3) and
specimens to be b467 years old as confirmed by U-series dating (Table
4; Burke and Robinson, 2012; Burke, 2012; Burke et al., unpubl. data).
The shallowest sample from 120 m water depth (B. malouinensis) was
bathed in subsurface waters of the mixed layer, whereas the samples
from 816 m (southern slope of Burdwood Bank) and 854 m water
depth (northern slope of Burdwood Bank) were bathed in AAIW (Fig.
2; Table 4). B. malouinensis (Fig. 3) is a species that is very abundant
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