Accepted Manuscript

Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt

Róbert Arató, Andreas Audétat

PII:	S0016-7037(17)30235-1
DOI:	http://dx.doi.org/10.1016/j.gca.2017.04.020
Reference:	GCA 10245
To appear in:	Geochimica et Cosmochimica Acta
Received Date:	2 August 2016
Accepted Date:	11 April 2017

Please cite this article as: Arató, R., Audétat, A., Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt, *Geochimica et Cosmochimica Acta* (2017), doi: http://dx.doi.org/10.1016/j.gca.2017.04.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Experimental calibration of a new oxybarometer for silicic
2	magmas based on vanadium partitioning between magnetite and
3	silicate melt
4	Róbert Arató*, Andreas Audétat
5	Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
6	
7	Abstract
8	Partition coefficients of vanadium between magnetite and rhyolitic silicate melt, $D_V^{mgt/melt}$,
9	were experimentally determined as a function of oxygen fugacity (0.7-4.0 log units above the
10	fayalite-magnetite-quartz buffer), temperature (800-1000 °C), melt aluminum saturation
11	index (ASI=0.74-1.14), magnetite composition (0.2-14 wt% TiO ₂) and pressure (1-5 kbar; at
12	H ₂ O saturation). Experiments were performed by equilibrating small ($\leq 20 \mu m$), V-free
13	magnetite grains in V-doped silicate melts (~100 ppm V) and then analyzing both phases by
14	LA-ICP-MS. Attainment of equilibrium was demonstrated by several reversal experiments.
15	The results suggest that $D_V^{mgt/melt}$ depends strongly on fO_2 , increasing by 1.5-1.7 log units
16	from the MnO-Mn ₃ O ₄ buffer to the Ni-NiO buffer, and to lesser (but still considerable)
17	extents on melt alumina saturation index (ASI; increasing by 0.3-0.7 log units over 0.4 ASI
18	units) and temperature (increasing by 0.3-0.7 log units over a 200 °C interval at a fixed fO_2
19	buffer). Magnetite composition and melt water content seem to have negligible effects. The
20	data were fitted by the following linear regression equation:

$$\log D_V^{mgt/melt} = 0.3726 * \frac{10,000}{T} + 2.0465 * ASI - 0.4773 * \Delta FMQ - 2.1214$$

21 , in which temperature is given in K, ASI refers to molar $Al_2O_3/(CaO+Na_2O+K_2O)$ and 22 Δ FMQ refers to the deviation of fO_2 (in log units) from the fayalite-magnetite-quartz buffer. 23 This equation reproduces all of our data within 0.3 log units, and 89% of them within 0.15 24 log units. The main advantages of this new oxybarometer over classical magnetite–ilmenite 25 oxybarometry are (1) that it can be applied to rocks that do not contain ilmenite, and (2) that 26 it is easier to apply to slowly-cooled rocks such as granites.

27 * Author to whom correspondence should be addressed (robert.arato@uni-bayreuth.de)

Download English Version:

https://daneshyari.com/en/article/5783290

Download Persian Version:

https://daneshyari.com/article/5783290

Daneshyari.com