Accepted Manuscript

Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea

Zhiyong Lin, Xiaoming Sun, Harald Strauss, Yang Lu, Junli Gong, Li Xu, Hongfeng Lu, Barbara M.A. Teichert, Jörn Peckmann

PII: S0016-7037(17)30290-9

DOI: http://dx.doi.org/10.1016/j.gca.2017.05.015

Reference: GCA 10284

To appear in: Geochimica et Cosmochimica Acta

Received Date: 22 September 2016

Accepted Date: 12 May 2017

Please cite this article as: Lin, Z., Sun, X., Strauss, H., Lu, Y., Gong, J., Xu, L., Lu, H., Teichert, B.M.A., Peckmann, J., Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea, *Geochimica et Cosmochimica Acta* (2017), doi: http://dx.doi.org/10.1016/j.gca.2017.05.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea

Zhiyong Lin^{a,c,d}, Xiaoming Sun^{a,b,c,e*}, Harald Strauss^{d*}, Yang Lu^{b,c}, Junli Gong^a, Li Xu^{b,c}, Hongfeng Lu^f, Barbara M.A. Teichert^d, Jörn Peckmann^{g,h}

^aSchool of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

^bSchool of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China

^cGuangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering,

Guangzhou 510006, China

^dInstitut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Münster, Germany

^eSouth China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China

^fGuangzhou Marine Geological Survey, Guangzhou 510760, China

⁸Institut für Geologie, Universität Hamburg, Hamburg 20146, Germany

^hDepartment für Geodynamik und Sedimentologie, Universität Wien, 1090 Wien, Austria

*Corresponding author. Tel.: +86-20-84110968; E-mail addresses: eessxm@mail.sysu.edu.cn (X. Sun); hstrauss@uni-muenster.de (H. Strauss)

ABSTRACT

Multiple sulfur isotope signatures and secondary ion mass spectroscopy (SIMS) sulfur isotope compositions of pyrite from two seafloor sites (DH-CL11 and HD109) in seepage areas of the South China Sea were measured in order to study isotope effects of sulfate-driven anaerobic oxidation of methane (SO₄-AOM). The multiple sulfur isotopes of pyrite reveal variable ranges for both sites (δ^{34} S: between –44.1 and –2.9‰ for DH-CL11 and between –43.8 and –1.6‰ for HD109; Δ^{33} S: between 0.02 and 0.17‰ for DH-CL11 and between –0.03 and 0.14‰ for HD109). SIMS analysis reveals an extreme variability of δ^{34} S values (between –50.3 and

Download English Version:

https://daneshyari.com/en/article/5783392

Download Persian Version:

https://daneshyari.com/article/5783392

<u>Daneshyari.com</u>