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a b s t r a c t

This paper revisits visco-elastodynamics from its most standard formulation to some more advanced
description involving frequency-dependent damping (or viscosity), analyzing the effects of considering
fractional derivatives for representing such viscous contributions. We will prove that such a choice re-
sults in richer models that can accommodate different constraints related to the dissipated power,
response amplitude and phase angle. Moreover, the use of fractional derivatives allows to accommodate
in parallel, within a generalized Kelvin-Voigt analog, many dashpots that contribute to increase the
modeling flexibility for describing experimental findings. Finally, the effect of fractional damping in
dynamic soil models will be addressed within a seismic site analyses framework.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction to standard computational dynamics

Solid dynamics is usually formulated either in the time or in the
frequency domains. The first is preferred when calculating tran-
sient responses, whereas the frequency approach is an appealing
alternative for calculating forced responses, both extensively used
and described in many reference books, as for example (Clough and
Penzien, 1993). The general discrete form of linear solid dynamics
writes

M
d2UðtÞ
dt2

þ C
dUðtÞ
dt

þ KUðtÞ ¼ FðtÞ; (1)

whereM, C and K are respectively the mass, damping and stiffness
matrices, U the vector that contains the nodal displacements and F
the nodal excitations (forces).

The main drawback related to the time integration of Eq. (1) lies
in the necessity of solving a linear system (usually of very large size)
at each time step, in particular when some of thesematrices change
in time for a variety of reasons (time dependent behavior, non-
linearities, …).

Loads can be easily expressed in the frequency domain. In what
follows we consider without loss of generality the simplest sce-
nario: F(t) ¼ fg(t), with jjfjj ¼ 1. The time function g(t) can be
expressed from the superposition of harmonic functions eiut, withu
the circular frequency and i ¼

ffiffiffiffiffiffiffi
�1

p
. If we assume a single frequency

harmonic excitation, g(t) ¼ eiut, the response of a linear solid is
expected having the same frequency but exhibiting a certain phase
angle q, i.e. UðtÞ ¼ Ueiutþiq, where U is the vector containing the
amplitude of the nodal displacements. This vector can be rewritten
as UðtÞ ¼ Ueiutþiq ¼ Ueiut , where now U ¼ Ueiq denotes a vector of
complex entries, with U ¼ Ur þ iUi, where Ur and Ui are respec-
tively the real and imaginary parts of U.

By introducing F(t) ¼ feiut and UðtÞ ¼ Ueiut into Eq. (1) it results
the frequency-based description of solid dynamics

�
� u2Mþ iuCþ K

�
U ¼ f; (2)

where the exponential factor eiut was eliminated from both
members.

If damping vanishes, i.e. C ¼ 0, and one focuses on the free
response of the mechanical system, i.e. f ¼ 0, then Eq. (2) reduces
to:
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KU ¼ u2MU; (3)

that defines an eigenproblem that results in the eigenmodesUi and
the associated eigenfrequencies u2

i . Eigenmode Ui scaled from
some normalization condition is called normal mode and is noted
by fi. It is usual to normalize eigenmodes according to
fT
i Mfi ¼ Mi ¼ 1, from which it results fT

i Kfi ¼ Ki ¼ u2
i , where Mi

and Ki are known as modal mass andmodal stiffness respectively. If
normal modes are placed in the columns of matrix P, we could
express U in the orthonormal basis defined by the normal modes,
according to

U ¼ P$xðtÞ: (4)

Now, by injecting (4) into Eq. (1), premultiplying by the trans-
pose of P and taking into account the orthogonality conditions
fT
j Mfi ¼ 0 and fT

j Kfi ¼ 0 when i s j, it results

I
d2xðtÞ
dt2

þ PTCP
dxðtÞ
dt

þ diag
�
u2
i

�
xðtÞ ¼ PTFðtÞ (5)

where I is the unit matrix.
When damping vanishes, C ¼ 0, the previous equation reduces

to a linear system of uncoupled second order ordinary differential
equations.

When damping applies matrix Ce≡ PTCP is not in general diag-
onal compromising the efficiency of modal analysis. To circumvent
this issue different diagonalization procedures have been proposed
and widely used. Two usual diagonalization procedures are: (i)
diagonalization by model damping that expresses ~C ¼ diagð2ziuiÞ,
where zi denotes the damping ratio for the i-th natural mode; and
(ii) Rayleigh diagonalization that by assuming C ¼ a0M þ a1K re-
sults in ~C ¼ diagða0 þ a1u2

i Þ ¼ diagð2ziuiÞ , with
zi ¼ 1=2ða0=ui þ a1uiÞ. These choices imply approximations whose
validity and accuracy must be checked.

A more precise route consists of extracting the modes from the
solution of the quadratic complex eigenproblem

�
Kþ iuC� u2M

�
U ¼ 0: (6)

However, many times models involves parametric damping,
that is, damping depends on some parameters grouped in vector m,
C(m), and in that case the solution of parametric quadratic eigen-
problems remains an open issue (Quraishi et al., 2014) (Tisseur and
Meerbergen, 2001).

When one is interested in solving problems with parametric
damping, the best choice, in our opinion, is renouncing to direct
time integrations and also to modal analysis based time in-
tegrations, in favor of an alternative approach, purely harmonic,
making use of Eq. (2).

In what follows we assume that the applied load can be written
from the superposition of harmonic functions of angular frequency
u

gðtÞ ¼
Z∞
�∞

GðuÞeiutdu; (7)

where GðuÞ represents the content of each harmonic eiut in g(t). In
fact GðuÞ is the Fourier transform of g(t)

GðuÞ≡F ðgðtÞÞ ¼
Z∞
�∞

gðtÞe�iutdt: (8)

In general Gðu<u�Þ ¼ Gðu>uþÞz0, that is

gðtÞz
Zuþ

u�

GðuÞeiutdu; (9)

that implies that Eq. (2) must be solved for any value of u2[u�,uþ]

�
� u2Mþ iuCþ K

�
UðuÞ ¼ f; (10)

that leads to the parametric solution UðuÞ, that by applying the
superposition principle that characterizes linear behaviors leads to
the general solution

UðtÞ ¼
Zuþ

u�

GðuÞUðuÞeiutdu: (11)

The main drawback of that approach is the necessity of solving a
linear system related to the solution of Eq. (10) for each value of u
involved in the discrete inverse transform (11), number that in-
creases with the frequency interval length Du ¼ ��uþ � u��� and
with the signal resolution. For this reason, modal analysis is much
more employed than harmonic analysis.

In the general parametric case, mass, damping and stiffness
matrices can depend on a series of parameters grouped in the
vector m, i.e. M(m), C(m) and K(m), making difficult, as indicated
above, the employ of modal analysis that requires the solution of
parametric eigenproblems (Quraishi et al., 2014) (Tisseur and
Meerbergen, 2001). On the other hand the use of harmonic anal-
ysis requires solving Eq. (10) for each frequencyu and each possible
choice of the parameters mj,Uðu;mjÞ to finally compute the discrete
sum related to

U
�
t;mj

� ¼ Zuþ

u�

GðuÞU�
u;mj

�
eiutdu (12)

for any choice of the parameters mj.
Thus, if for example we consider two parameters mT ¼ (m1, m2),

each one sampled using hundred values, mj involves 104 samples,
i.e. j ¼ 1,$$$,104. Now, if we assume 104 discrete frequencies
involved in the reconstruction of g(t), the calculation of the para-
metric solution Uðui;mjÞ requires solving 108 linear systems.

The use of the Proper Generalized Decomposition largely
considered in our former works (Chinesta et al., 2011, 2010, 2013,
2014), allows solving the parametric model

�
� u2MðmÞ þ iuCðmÞ þ KðmÞ

�
Uðu;mÞ ¼ f (13)

by assuming the separated representation

Uðu;m1;m2Þz
XN
k¼1

ZkWkðuÞM 1
kðm1ÞM 2

kðm2Þ; (14)

where Zk is a vector of nodal displacements andWk(u), M 1
kðm1Þ and

M 2
kðm2Þ are functions that depend on the extra-coordinates u, m1

and m2, respectively. The construction of the separated represen-
tation (14) implies the solution of a number of linear systems
scaling with the number of terms involved in the finite sum, i.e. in
the order of N linear systems (N being in general of few tens).

In soil mechanics (Pecker, 1984) the damping is assumed scaling
with the inverse of frequency. The interested reader can refer to
(Crandall, 1970) that analyzed the theoretical consequences of
assuming a frequency dependent dashpot parameter. In (Crandall,
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