Accepted Manuscript

Application of fractal-wavelet analysis for separation of geochemical anomalies

Peyman Afzal, Kamyar Ahmadi, Kambiz Rahbar

PII: S1464-343X(16)30279-5

DOI: 10.1016/j.jafrearsci.2016.08.017

Reference: AES 2654

To appear in: Journal of African Earth Sciences

Received Date: 17 February 2016

Revised Date: 12 August 2016

Accepted Date: 16 August 2016

Please cite this article as: Afzal, P., Ahmadi, K., Rahbar, K., Application of fractal-wavelet analysis for separation of geochemical anomalies, *Journal of African Earth Sciences* (2016), doi: 10.1016/j.jafrearsci.2016.08.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Application of fractal-wavelet analysis for separation of geochemical anomalies
2	Peyman Afzal ^{1*} , Kamyar Ahmadi ² , Kambiz Rahbar ³
3	1- Department of Mining engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
4	2- Department of Petroleum Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran,
5	Iran
6	3- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
7	
8	Abstract
9	The purpose of this paper is separation and detection of different geochemical populations and anomalies from
10	background utilizing fractal-wavelet analysis. Daubechies2 and Morlet wavelets were used for transformation of the
11	Cu estimated data to spatial frequency based on lithogeochemical data in Bardaskan area (SE Iran) by a MATLAB
12	code. Wavelet is a significant tool for transformation of exploratory data because the noise data are removed from
13	results and also, accuracy for determination of thresholds can be higher than other conventional methods. The Cu
14	threshold values for extremely, highly and moderately anomalies are 1.4%, 0.66% and 0.4%, respectively, according
15	to the fractal-wavelet analysis based on the Daubichies2 transformation. Moreover, the fractal-wavelet analysis by
16	the Morlet wavelet shows that the Cu threshold values are 2%, 0.75% and 0.46% for extremely, highly and
17	moderately anomalies and populations, respectively. The results obtained by the both WT methods indicate that the
18	main Cu enriched anomalies and populations were situated in the central parts of the Bardaskan district which are
19	associated with surface mineralization and ancient mining digs. Furthermore, results derived via the Morlet WT is
20	better than Daubichies2 WT according to the correlation with geological characteristics by logratio matrix. The
21	results obtained by the fractal-wavelet method have a good correlation with geological particulars including
22	alteration zones and surface Cu mineralization which reveals the proposed technique is an applicable approach for
23	identification of various geochemical anomalies and zones from background. However, the main targets for detailed
24	exploration is located in the central part of the studied area.
25	
26	Keywords: Decomposed Wavelet Transformation (DWT); Geochemical anomaly; Fractal-wavelet analysis;

27 Daubechies wavelet; Morlet wavelet.

^{*} Corresponding author Email address: P_Afzal@azad.ac.ir

Download English Version:

https://daneshyari.com/en/article/5785657

Download Persian Version:

https://daneshyari.com/article/5785657

Daneshyari.com