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a b s t r a c t

A recent method for modeling folds uses a fold frame with coordinates based on the structural geology of
folds: fold axis direction, fold axial surface and extension direction. The fold geometry can be charac-
terised by rotating the fold frame by the pitch of the fold axis in the axial surface and the angle between
the folded foliation and the axial surface. These rotation angles can be expressed as 1D functions of the
fold frame coordinates. In this contribution we present methods for extracting and automatically
modeling the fold geometries from structural data. The fold rotation angles used for characterising the
fold geometry can be calculated locally from structural observations. The fold rotation angles incorporate
the structural geology of the fold and allow for individual structural measurements to be viewed in the
context of the folded structure. To filter out the effects of later folding the fold rotation angles are plotted
against the coordinates of the fold frame. Using these plots the geometry of the folds can be interpolated
directly from structural data where we use a combination of radial basis function and harmonic analysis
to interpolate and extrapolate the fold geometry. This contribution addresses a major limitation in
existing methods where the fold geometry was not constrained from structural data. We present two
case studies: a proof of concept synthetic model of a non-cylindrical fold and an outcrop of an asym-
metrical fold within the Lachlan Fold belt at Cape Conran, Victoria, Australia.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Folds are one of the most common features found in deformed
rocks (Ramsay and Huber, 1987) but still present a challenge for
three-dimensional structural modeling because the geometry of
folded surfaces cannot be characterised from individual structural
observations. Folds produce localised variations in curvature (Lisle
and Toimil, 2007; Mynatt et al., 2007), however interpolation al-
gorithms at the base of structural modeling generally fit a surface of
minimal curvature (Jessell et al., 2014; Laurent et al., 2016). To
model folded surfaces, the geologist is often required to use addi-
tional cross sections, level maps or other interpretive constraints
such as synthetic bore holes to produce the expected geometry

(Caumon et al., 2003; Jessell et al., 2010, 2014). This approach has
proven operative in practice, but it is often cumbersome and re-
duces the objectivity and reproducibility of the modeling process.
Most interpolation algorithms only consider local orientation of the
surface and cannot incorporate any additional structural informa-
tion or geological knowledge. These methods do not incorporate all
available structural information collected by field geologists such
as: lineations, foliations, overprinting relationships, fold axis, fold
axial surface and vergence. This additional structural information
can provide excellent constraints on complicated geometries found
in hard rock terranes (Laurent et al., 2016).

In implicit modeling systems, geological surfaces such as litho-
logical contacts, fold axial surfaces or fault surfaces are represented
by isovalues of a global scalar field (Cowan et al., 2003; Frank et al.,
2007; Calcagno et al., 2008; Hillier et al., 2014). The scalar field is
interpolated using some of the available geological observations
(e.g. orientation, lithology type, structural trend). A number of
different interpolation methods exist (Cowan et al., 2003; Moyen
et al., 2004; Aug et al., 2005; Frank et al., 2007; Calcagno et al.,
2008; Caumon et al., 2013). These methods typically consider the
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final state of deformation and attempt to produce final 3D fold
geometry from spatial measurements such as form lines, and strike
and dip measurements. However, these methods generally use
variants of isotropic Laplacian minimization, which is only appro-
priate when spatial observations are densely sampled. In sparse
data settings, this isotropic assumption tends to generate structural
geometries that are incompatible with the strong curvature
anisotropy classically observed in folded terrains (Lisle and Toimil,
2007; Mynatt et al., 2007) and are highly non-developable (Thibert
et al., 2005).

The problem of geometrically modeling folds has been
addressed by a number of authors (Hillier et al., 2014; Laurent et al.,
2016; Massiot and Caumon, 2010; Maxelon et al., 2009; Thibert
et al., 2005). These approaches have provided the framework to
incorporate the fold axial surface (Laurent et al., 2016; Maxelon
et al., 2009; Thibert et al., 2005), fold axis (Massiot and Caumon,
2010; Hillier et al., 2014; Laurent et al., 2016) and a description of
fold geometry and overprinting relationships (Laurent et al., 2016).
Laurent et al. (2016) introduced a global fold frame which provides
a reference coordinate system for each deformational event based
on the structural elements of the fold. This allows for the geometry
of older folds to be described without the effects of younger
deformation events. For each folding event two rotation angles are
calculated from field data: (1) the fold axis rotation angle, and (2)
the fold limb rotation angle. To parametrise the variations of these
two angles with respect to the fold frame, Laurent et al. (2016) use a
periodical fold shape, which depends on estimations of fold
wavelength, amplitude and location of fold hinges. In Laurent et al.
(2016) these parameters are inferred using trial and error.

In this contribution, we present a method for directly extracting
and characterising the geometry of folds from field data. The two
fold rotation angles that are necessary for characterising a fold
geometry can be calculated locally from field observations and
interpolated throughout the model volume using multiple scalar
and vector fields. We present two approaches for characterising the
fold rotation angles within the fold frame: (1) standard interpola-
tion, where there is enough structural data to characterise the fold
shape, or; (2) a combined interpolation and extrapolation method
using a Fourier series to represent the fold geometry. Where
insufficient observations exist to characterise the geometry of the
fold throughout the model volume, the Fourier series approxima-
tion of the fold geometry provides a geologically reasonable esti-
mate that is objectively defined by the structural observations. We
demonstrate these approaches on: (1) a synthetic example of a
doubly plunging fold series, and (2) asymmetrical folds from Cape
Conran, Victoria.

2. Related work

2.1. Structural geology of folds

Structural geologists describe the geometry of folds using the
geometrical characteristics of the folded surfaces (Ramsay and
Huber, 1987, p. 311e317): (1) the fold hinge is the location of
maximum curvature for the folded surface, (2) the axial surface
separates opposing limbs and contains fold hinges of conformable
surfaces, and (3) the fold axis as either the fold hinge line or the
line of intersection between the folded foliation and the axial
foliation.

A planar fabric can often be observed orthogonal to the direction
of principal shortening and roughly parallel to the fold axial surface
(Ramsay and Huber, 1987; Hudleston and Treagus, 2010). This
foliation can be used in a general case, to characterise the geometry
of the axial surface away from fold hinges. This fabric is often
pervasive and is commonly recorded by geologists to map the

geometry of the fold axial surface. The intersection of this foliation
and any older folded foliation provides a lineation that is parallel to
the direction of the fold axis. These foliations and lineations can
themselves be deformed by later folding events. By identifying
structural elements of successive folding events and mapping their
spatial distributions and overprinting relationships, structural ge-
ologists are able to unravel complicated geological structures (e.g.
O'dea et al., 2006; Armit et al., 2012).

In a typical field mapping campaign, a structural geologist will
systematically record the orientation of foliation surfaces and
associated lineations (Ramsay and Huber, 1987, p. 677e678). These
geometrical observations are typically interpreted and summarised
onto a map as form lines. Fig. 1A shows the bedding trace of a small
outcrop and Fig. 1B shows the relevant structural information that
could be used to unravel the geometry of this outcrop from only
selected areas. Form lines are usually a representation of the trend
of observations and will often record at the scale of the map, the
overprinting relationships that can be observed in and between
outcrops (Alsop and Holdsworth, 1999; de Kemp, 2000; Lisle,
2003). Form lines that represent the trace of the axial surface re-
cord the location of the fold hinge.

2.2. Implicit fold modeling

Laurent et al. (2016) use the structural elements of the fold (fold
axis, axial foliation and fold vergence) to define additional orien-
tation constraints for implicit modeling. A fold frame is defined
with coordinates represented by 3D scalar fields, denoted as x, y
and z. Three local direction vectors (ex, ey and ez) are implicitly
defined by the fold frame coordinates for any location and are used
to define the relative orientation of deformed foliations and
structural elements. One of the main ideas of the method is to use
classical interpolation (and the associated isotropic smoothness
assumption) on the least deformed surfaces defining the fold frame,
then to use this information to allow for anisotropic interpolation of
more deformed surfaces.

For example, to model the geometry of a structure resulting
from two folding events, the axial surface (S2) of the most recent
fold (F2) would be first modeled by interpolating field observations
of the axial surface or associated foliation. The orientation of the
axial surface (S1) of the older folding event (F1) can then be con-
strained with respect to (S2) using a description of the fold geom-
etry for F2 folds. This additional orientation constraint is in turn
used for interpolating S1 geometry and the process is finally
repeated for S0. Locally the fold geometry is constrained using a
global scalar field representing the angle between consecutive fo-
liations, e.g. S1 and S2.

The local orientation of the folded surfaces can be characterised
using the local direction vectors (ex, ey and ez) and two rotation
angles. The fold axis rotation angle rotates ey around ez to give the
orientation of the fold axis (Li). The orientation of the folded foli-
ation (Si�1) is characterised by rotating the whole fold frame
around the fold axis Li by the fold limb rotation angle. The fold axis
and fold limb rotation angles are the most important aspect of the
fold modeling workflow because they control the geometry of the
folded surface. The orientation of the folded surfaces need to fulfill
the following criteria. It should be as close to the observations of the
folded foliation as possible. Where no orientation constraints exist,
the geometry of the folded foliation should fit the most geologically
reasonable estimate, for example a folded surfaces should continue
to be defined by localised variations in curvature away from ob-
servations instead of becoming a smooth surface (Jessell et al.,
2014).
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