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a b s t r a c t

This paper focuses on the strain modelling of extensional fault-propagation folds to reveal the effects of
key factors on the strain accumulation and the relationship between the geometry and strain distribution
of fault-related folds. A velocity-geometry-strain method is proposed for the analysis of the total strain
and its accumulation process within the trishear zone of an extensional fault-propagation fold. This
paper improves the non-linear trishear model proposed by Jin and Groshong (2006). Based on the
improved model, the distribution of the strain rate within the trishear zone and the total strain are
obtained. The numerical simulations of different parameters performed in this study indicate that the
shape factor R, the total apical angle, and the P/S ratio control the final geometry and strain distribution
of extensional fault-propagation folds. A small P/S ratio, a small apical angle, and an R value far greater or
far smaller than 1 produce an asymmetric, narrow, and strongly deformed trishear zone. The velocity-
geometry-strain analysis method is applied to two natural examples from Big Brushy Canyon in Texas
and the northwestern Red Sea in Egypt. The strain distribution within the trishear zone is closely related
to the geometry of the folds.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Extensional fault-propagation folds are widespread in areas
such as the North Sea (Withjack et al., 1989), the Gulf of Suez
(Gawthorpe et al., 1997; Sharp et al., 2000; Jackson et al., 2006), the
Rocky Mountains (Janecke et al., 1998), and the Gilbertown Graben
System (Jin et al., 2009). They are usually caused by slip on a blind
normal fault. When the tip of the blind fault moves upwards at a
slower speed than the slip on the fault, synclines and anticlines
come into being (Ferrill et al., 2004).

Extensional fault-propagation folds attract the attention of ge-
ologists due to the common presence of hydrocarbons trapped in
these structures, and many studies focuse on their geometry, ki-
nematics, and dynamics (Gawthorpe et al., 1997; Jin et al., 1998;
Withjack et al., 1990; Schlische, 1995; Hardy and McClay, 1999;
Cardozo et al., 2003; Jin and Groshong, 2006). These studies indi-
cate that the formation of an extensional fault-propagation fold is
closely related to an inverted triangular (upward widening)
deformation zone referred to as “the trishear kinematic zone”.

The trishear model was first proposed by Erslev (1991) to
explain and predict the geometry of fault-propagation folds and
was then used to study the folds that formed in an extensional
environment. Hardy and Ford (1997), Allmendinger (1998), Hardy
and McClay (1999), and Gawthorpe and Hardy (2002) presented
various symmetric trishear models to describe and analyse the ef-
fects of key parameters on the final geometries of the fold and the
growth strata. Several non-linear numerical trishear models were
also proposed (Zehnder and Allmendinger, 2000; Jin and Groshong,
2006) to explain the existence of asymmetric trishear zones, which
were shown to be more consistent with reality based on field ob-
servations and experiments (Withjack et al., 1990).

Geologists tend to pay more attention to the velocity field
within the trishear zone and less attention to the corresponding
strain rate and final strain distribution. The strain rate and total
strain are two key variables in the deformation process and are
important for analysing the generation and relaxation of stress.
Therefore, the relationship between the final geometry and the
strain distribution of a fold requires further exploration.

In this paper, we focus on the strain modelling of an extensional
fault-propagation fold to reveal the relationship between the final
geometry and the strain distribution of the fold and the effects of
key factors on the strain accumulation. We propose a velocity-* Corresponding author.
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geometry-strain method to analyse the total strain and its accu-
mulation process within the trishear zone. We improve the non-
linear trishear model proposed by Jin and Groshong (2006) and
use it to show the velocity field and strain rate distribution within
the trishear zone using 3D images and contourmaps. By integrating
the velocity and strain rate with time, we obtain the final geometry
and strain distribution of the fold, which allows us to discuss their
relationship and the effects of three key parameters on them.
Finally, we apply the strain model to two examples from Big Brushy
Canyon in Texas and the northwestern Red Sea in Egypt and
determine the velocity field, final geometry, and strain distribution.
We recreate the deformation and strain accumulation process using
velocity-geometry-strain analysis and obtain a good estimate of the
geometry and strain distribution.

2. The improved model and its velocity field

The velocity of each point can be decomposed into two com-
ponents in the X and Y directions by establishing the coordinate
system shown in Fig. 1:

VðX;YÞ ¼ VxðX; YÞ þ VyðX; YÞ (1)

The boundary conditions of the two velocity components can be
obtained and be described as follows:

Vx ¼ V0 Vy ¼ 0 where Y ¼ X tanð41Þ (2.1)

Vx ¼ 0 Vy ¼ 0 where Y ¼ X tanð42Þ (2.2)

The question is how to describe the velocity variationwithin the
trishear zone. Jin and Groshong (2006) introduced a new shape
factor R and proposed a simple formula to describe the change in X-
direction velocity, from V0 at the left upper trishear boundary to
0 at the right lower trishear boundary, as follows:

Vx ¼ V0

�
1� lLP

lLR

�1=R

(3)

This formula shows that the X-direction velocity decreases non-
linearly along the line LR and is closely related to the distance be-
tween the points P and L. This formula can be used to simulate
various asymmetric trishear zones by choosing different values for

the factor R. We retained these basic concepts and made the
following improvements to this formula. (1) We use R rather than
(1/R) to simplify the formula; thus, the subsequent derivation is
simpler because R is more concise and more convenient. (2) The
factor R is put in parentheses, which has a noticeable effect on the
velocity in the Y direction. This improvement makes the model
better able to simulate layer-parallel shearing. These modifications
produce the following expression:

Vx ¼ V0
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where m1 ¼ tan (41) and m2 ¼ - tan (42).
We maintain the assumption that the cross-sectional area is

constant during the deformation process, which can be described
mathematically as follows:

vvx
vx

þ vvy
vy

¼ 0 (5)

Using Eqs. (4) and (5), we can obtain the equation for the Y-
direction velocity:

Vy ¼ V0
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þ C (6)

Substituting the boundary conditions of Eq. (2) into Eq. (6), we
get

C ¼ 0 (7.1)

C ¼ m1 þm2R
Rþ 1

� V0 (7.2)

Thus, we have

m2Rþm1 ¼ 0 (8)

Surprisingly, Eq. (8) is the same as that in the Jin and Groshong
model, indicating that when two of the three parameters (the
hanging wall apical angle 41, footwall apical angle 42, and factor R)
are given, the third one can be determined. As shown in Fig. 2, the
relationship between 41 and 42 varies with different values of
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Fig. 1. Basic geometry factors describing the trishear zone. For convenience, we use a vertical X-axis and a horizontal Y-axis, and the origin is the fault tip. P (X,Y) represents any
point in the trishear zone. When describing the velocity field, we use a new coordinate system in the right bottom corner; thus, V0 is positive.
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