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Thermal effects of natural convection in boreholes
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Abstract

Thermal regime in borehole is simulated by water-filled vertical channel passing through the rock massif. A constant temperature gradient
is maintained at the external borders of the massif. Results of numerical simulation of natural thermal convection arising in the channel are
presented. Analysis of the results shows the existence of two types of convective thermal effects disturbing the natural temperature field:
transient effect, which manifests itself as temperature oscillations around the mean temperature value at a given depth, and quasi-stationary
effect causing distortion of natural temperatures and temperature gradient. The obtained statistical relations for estimation of the characteristics
of thermal effects and convection flow velocities agree with the data recorded in real boreholes.
© 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

High-precision temperature measurements in boreholes,
including temperature monitoring, are increasingly used in
hydrogeological research (Anderson, 2005; Lapham, 1989), in
studies of the thermal field of the Earth (Beardsmore and Cull,
2001; Duchkov and Karchevskii, 2013; Duchkov and Kazant-
sev, 2007; Duchkov et al., 1987; Lyubimova, 1968), paleocli-
matic changes (Bodri and Cermak, 2011; Demezhko, 2001),
and geodynamic processes in seismically active regions (Bun-
tebarth et al., 2005; Demezhko et al., 2012a,b; Shimamura et
al., 1985), and on the exploration and exploitation of hydro-
carbon fields (Aslanyan et al., 2016). This is favored by the
appearance of modern sensors, equipment, and recording
systems ensuring high accuracy, stability, and spatial and
temporal resolution. As a result, it becomes possible to
estimate rather weak temperature anomalies (hundredths and
thousandths of a degree) and related processes in the geologic
environment. This instrumental potential, however, is not
always implemented completely because of the temperature
noise caused by the natural thermal convection of fluid in
boreholes.

Thermal effects of natural thermal convection are observed
in many boreholes where temperature grows with depth
(Devyatkin and Kutasov, 1973; Diment, 1967; Gretener, 1967;

Sammel, 1968). For example, in boreholes with a diameter of
75 mm filled with water with a temperature of 20 ºC,
convection arises at a temperature gradient of 8 K/km, and in
boreholes with a diameter of 100 mm, at 2.5 K/km. In most
boreholes the temperature gradient is much higher. The
mechanism of convection is as follows: A colder and, hence,
heavier fluid is localized over a warmer one because of a
positive temperature gradient and determines the ther-
momechanical instability in the liquid column. As a result,
ascending and descending flows arise, which tend to smooth
out the density and temperature inhomogeneities. The thermal
convection in a borehole causes small (a few hundredths of a
degree) deviations of the fluid temperature from the unpertur-
bed rock temperature, which limit the accuracy of measure-
ments and thus are an obvious setback. The convective “noise”
limits the minimum length of the interval of geothermal-gra-
dient evaluation. This significantly reduces the resolution of
logging detecting thermal physical inhomogeneities in rocks
(Pfister and Rybach, 1995; Wisian et al., 1998). The unsteadi-
ness of the convection process manifests itself during studies
of the thermal regime in boreholes (Berthold and Börner,
2008; Cermak et al., 2008a; Eppelbaum and Kutasov, 2011).
The problem of taking into account or suppressing the
convective “noise” is especially important during borehole
temperature monitoring in seismically active regions, when
rather weak temperature signals related to deformation proc-
esses are studied (Demezhko et al., 2012a,b).

In this paper we quantitatively estimated the temperature
effects (their amplitude and spatial and temporal dynamics),
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based on the results of numerical simulation of natural thermal
convection and their statistical analysis. Earlier, numerical
simulation of this process was made by Cermak et al. (2008b),
Khoroshev (2012), and Mindubaev and Demezhko (2012). The
former work was dealt with study of thermal convection in a
vertical slit, and the other two focused attention on slightly
supercritical convective regime. 

Numerical simulation

We considered a model in which a vertical channel of
square cross section with side 2r, filled with fluid (water), is
surrounded by a rock massif with temperature conductivity am
different from that of the fluid, aw. A constant temperature
gradient is maintained at the external borders of the massif.
Numerical simulation for this model is easier to implement.
On the other hand, this model describes well a real borehole
of diameter 2r, because the “effective” cross section of the
square channel is somewhat smaller than its true cross section
as a result of the stabilizing effect of viscosity in the section
corners (Gershuni and Zhukhovitskii, 1972). The fluid flow in
this zone is described by a system of equations for natural
thermal convection in the Boussinesq approximation (Ger-
shuni and Zhukhovitskii, 1972):

∂u
∂t

 + (u ⋅ ∇) u = − 
1
ρ0

 ∇P + v∇ 2u − β g (T − T0), (1.1)

∂T
∂t

 + (u ⋅ ∇) T = aw ∇ 2T, (1.2)

∇ ⋅ u = 0, (1.3)

ρ = ρ0 (1 − β (T − T0)),

where ∇ 2 = 
∂2

∂x2 + 
∂2

∂y2
 + 

∂2

∂z2
, T0 is the equilibrium temperature

distribution; u is the fluid flow velocity; g is the gravity vector;
ν is the kinematic viscosity; β is the thermal-expansion
coefficient; P is the pressure; and ρ and ρ0 are the density
and the equilibrium density distribution, respectively. There is
no flow in the enclosing massif. A corresponding equation for
the propagation of heat in this zone is 

∂T
∂t

 = am ∇ 2T. 

We used the following measurement units: length—the
half-width of the horizontal section, r; time—r2/aw; velocity—
aw /r; and temperature—Gr, where G is the temperature
gradient. To eliminate the pressure gradient from the equation,
the velocity is usually expressed in terms of the velocity
potential (Mallinson and de Vahl Davis, 1977): 

u = ∇ × ψ. (2)

In this case, Eq. (1.3) is automatically satisfied. A vorticity
vector is also introduced: 

ω = ∇ × u. (3)

The corresponding substitutions of (2) and (3) into (1) gives
the following system of equations with variables (ω, ψ, T)
(Mallinson and de Vahl Davis, 1977): 

∂ωω
∂t

 + ∇ × (ω × u) = Pr ∇ 2ω − PrRa (∇ × Tez), (4.1)

∇ 2ψ = −ωω, (4.2)

∂T
∂t

 + (u × ∇) T = ∇ 2T, (4.3)

where Ra = 
βgGr4

av
 is the Rayleigh number, Pr = 

v
a

 is the

Prandtl number, and ez is the unit vector. After nondimension-
alization, the heat conductivity equation for the enclosing
massif is as follows: 

∂T
∂t

 = b∇ 2T, (5)

where b = am/aw. The horizontal borders are taken to be
isothermal: T = 0,  z = λz, T = λz, and z = 0, where λz = Lz/r
is the aspect ratio characterizing the ratio of the vertical length
of the zone, Lz, to the half-width of the horizontal section, r.
The temperature distribution at the lateral vertical borders of
the massif is maintained linear: T(z) = λz – z, x = –λx/2 and
x = λx/2, and y = –λy/2 and y = λy/2, where λx and λy are the
ratios of the corresponding horizontal dimensions of the
massif, Lx and Ly, to r.

Simultaneous solution of Eqs. (4) and (5) permits one to
take into account the conditions of a thermal contact between
the two zones and to consider cases intermediate between the
two extreme ones, when the channel boundaries are an ideal
conductor (Mindubaev and Demezhko, 2012) or an isolator,
i.e., to consider the thermal effect of flows on the temperature
distribution in the surrounding massif.

According to Hirasaki and Hellums (1968), the components
of the vector velocity potential ψ at the boundaries are
expressed as 

∂ψx

∂x
 = ψy = ψz = 0, at x = −1, 1;

∂ψy

∂y
 = ψx = ψz = 0, at y = −1, 1;

∂ψz

∂z
 = ψx = ψy = 0, at z = 0, λz. 

According to Aziz and Hellums (1967), the boundary
conditions for the vorticity vector ω at the solid lateral
boundaries are as follows:

ωx = 0,  ωy = 
∂2ψy

∂x2 ,  ωz = 
∂2ψz

∂x2   at  x = −1, 1;

ωx = 
∂2ψx

∂y2 ,  ωy = 0,  ωz = 
∂2ψz

∂y2   at  y = −1, 1;
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