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Studying small-scale geologic discontinuities, such as faults, cavities and fractures, plays a vital role in analyzing
the inner conditions of reservoirs, as these geologic structures and elements can provide storage spaces and
migration pathways for petroleum. However, these geologic discontinuities have weak energy and are easily
contaminated with noises, and therefore effectively extracting them from seismic data becomes a challenging
problem. In this paper, a method for detecting small-scale discontinuities using dictionary learning and sparse
representation is proposed that can dig up high-resolution information by sparse coding. A K-SVD (K-means
clustering via Singular Value Decomposition) sparse representation model that contains two stage of iteration
procedure: sparse coding and dictionary updating, is suggested for mathematically expressing these seismic
small-scale discontinuities. Generally, the orthogonal matching pursuit (OMP) algorithm is employed for sparse
coding. However, the method can only update one dictionary atom at one time. In order to improve calculation
efficiency, a regularized version of OMP algorithm is presented for simultaneously updating a number of atoms at
one time. Two numerical experiments demonstrate the validity of the developed method for clarifying and
enhancing small-scale discontinuities. The field example of carbonate reservoirs further demonstrates its
effectiveness in revealing masked tiny faults and small-scale cavities.
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1. Introduction

Many significant researches on detecting geologic discontinuities
have been conducted in seismic exploration and the well-known
coherency algorithms (Bahorich and Farmer, 1995; Marfurt et al.,
1998, 1999; Gersztenkorn and Marfurt, 1999) have been updated
to the third generation. Some detection methods based on signal
processing are also explored for reflection enhancement and edge
sharpness, such as matching pursuit algorithm (Mallat and Zhang,
1993; Castagna et al., 2003; Liu andMarfurt, 2005), spectral decomposi-
tion algorithms (Partyka et al., 1999; Puryear et al., 2012; Gao, 2013)
and edge-preserving processing (Luo et al., 2002; Fehmers and
Höecker, 2003). Until recently, there is some lack of knowledge about
using sparse optimization theory to detect seismic small-scale geologic
discontinuities. Studying these small-scale discontinuities belongs to
the scope of high-resolution recovery, with the weak information
masked by strong background and noises. A strategy is to reconstruct
them using dictionary learning and sparse representation.

The method of dictionary learning and sparse representation has
demonstrated successful applications in the community of image recov-
ery and feature extraction. The key of such a method is to create a

dictionary for sparse representation of signals and the dictionary can ei-
ther be chosen as a predefined set of basic functions or the one learned
from a set of given examples. Sometimes a predefined transformation is
really an attractive choice because of its speediness in estimating sparse
representation, such as wavelet (Freeman and Adelson, 1991; Shan
et al., 2009), curvelet (Cao et al., 2015) and wedgelet (Donoho, 1998).
However, the success of such a predefined dictionary depends on its
fitting to the sparsely described signals. On the contrary, the learned
dictionary can deal with more complicated data and has already been
extensively used in many fields, such as image processing (Yang et al.,
2016; Yeganli et al., 2016), speech signal representation (Jafari and
Plumbley, 2011; You et al., 2014) and seismic data processing (Zhou
et al., 2014; Chen et al., 2016). Since seismic small-scale discontinuities
that are mainly associated with faults and cavities possess a weak
spatial correlation, effectively detecting and recovering them from seis-
mic data is a challenge to the predefined transformations. In addressing
such an inverse problemby the Bayesian approach, a prior acknowledge
based on some simplifying assumptions, such as spatial smoothness
or entropy, is usually proposed, and the quality of these methods
strongly depend on a guess of the prior information. However, the
example-based technique suggests learning this prior information
from seismic data and merger it in training a dictionary. Therefore, the
way of creating dictionaries by training them from a given example
set is employed in this paper.

Journal of Applied Geophysics 137 (2017) 55–62

⁎ Corresponding author.
E-mail address: diffzjt@163.com (J. Zhao).

http://dx.doi.org/10.1016/j.jappgeo.2016.12.005
0926-9851/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Applied Geophysics

j ourna l homepage: www.e lsev ie r .com/ locate / j appgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2016.12.005&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2016.12.005
mailto:diffzjt@163.com
Journal logo
http://dx.doi.org/10.1016/j.jappgeo.2016.12.005
http://www.sciencedirect.com/science/journal/09269851
www.elsevier.com/locate/jappgeo


The structure of the paper is organized as follows. First, a sparsity-
constraint model for expressing seismic small-scale discontinuities is
presented. Second, an effective implementation scheme of the K-SVD
algorithm is suggested for solving this model. Third, two numerical
experiments and one field application to test the feasibility of the
proposed method are provided. A conclusion and discussion will end
this paper.

2. Seismic detection method for small-scale discontinuities

2.1. Sparse model for representing small-scale discontinuities

The basic model for sparse representation indicates that signals can
be effectively expressed as a linear combination of atoms and the
corresponding linear coefficients are sparse (Rubinstein et al., 2010;
Wang et al., 2012). For recovering the small-scale discontinuities from
seismic data, the classic sparse representation model is used:

min
D;X

Y−DXk k2F
s:t: Xik k0 ≤ δ; D j

�� ��
2 ¼ 1; i ¼ 1;2;…;M; j ¼ 1;2;…;R

ð1Þ

where matrix Y is seismic data with the size of N×M after the
plane-wave destruction (PWD) (Fomel, 2002; Yu et al., 2015), matrix
D is a dictionary with the size of N×R and X is a sparse representation
matrix with the size of R×M. The notation ‖·‖F2 is Frobenius norm. Vec-
tors Xi and Dj stand for the i-th column and the j-th column of the ma-
trices X and D, respectively. Parameter δ controls the sparsity level
and notation ‖·‖0 counts non-zero elements.

In order to efficiently train the sparse dictionary from given
examples, the K-SVD scheme that is the generalization of the K-means
cluster is adopted because of its fast convergence.

2.2. K-SVD scheme for the sparse model

The K-SVD algorithm (Elad and Aharon, 2006; Rubinstein et al.,
2008) that trains a dictionary from given examples has already been
successfully used in many signal processing tasks. However, this meth-
od requires greatmemorywhen the dimensions of dictionarymatrix in-
crease or the training samples become large. A strategy for promoting
its calculation efficiency is suggested by modifying dictionary updating
steps and sparse-coding process. In this paper, a regularized version of
OMP to sparsely code large signals is employed. The corresponding pro-
cedure for iteratively solving the proposed sparse model (1) is listed:

Algorithm 1. (Solving the sparse representation model)

Step 1 Input matrix Y, initial dictionary D0, desired sparsity level δ,
the maximum iteration number n and initial loop index k=0;

Step 2 Calculate sparse representation matrix X by solving the following
sub-problem:

Xi ¼ argmin
x

Yi −Dxk k22; s:t: xk k0 ≤ δ

where Xi ,Yi , i=1 ,2 ,… ,M are the i-th column of matrices X and Y,
respectively;

Step 3 Update dictionary by individually calculating its every column:

Dj=0; (j=1,2,… ,R is the j-th column of matrix D)

Fig. 1.Modified Marmousi model with three strings of different scales of cavities.

Fig. 2. Prestack depth image of modified Marmousi model with the second and third
strings of cavities shown except for the first smallest scale one.

Fig. 3. Statistical analysis for showing the convergence of the K-SVD algorithm inmodified
Marmousi model with 100 times of iterations.
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