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A B S T R A C T

This study compares two finite–element (FE) and three finite–volume (FV) schemes which use unstructured
tetrahedral grids for the modelling of electromagnetic (EM) data. All these schemes belong to a group of
differential methods where the electric field is defined along the edges of the elements. The FE and FV
schemes are based on both the EM–field and the potential formulations of Maxwell’s equations. The EM–
field FE scheme uses edge–based (vector) basis functions while the potential FE scheme uses vector and
scalar basis functions. All the FV schemes use staggered tetrahedral–Voronoï grids. Three examples are used
for comparisons in terms of accuracy and in terms of the computation resources required by generic iterative
and direct solvers for solving the problems. Two of these examples represent survey scenarios with electric
and magnetic sources and the results are compared with those from the literature while the third example
is a comparison against analytical solutions for an electric dipole source. Exactly the same mesh is used for
all examples to allow for direct comparison of the various schemes. The results show that while the FE and
FV schemes are comparable in terms of accuracy and computation resources, the FE schemes are slightly
more accurate but also more expensive than the FV schemes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Common numerical methods use structured rectilinear grids for
the modelling of geophysical electromagnetic (EM) data (e.g., Avdeev
et al., 2002; Farquharson and Miensopust, 2011; Farquharson and
Oldenburg, 2002; Fomenko and Mogi, 2002; Hursan and Zhdanov,
2002; Madden and Mackie, 1989; Mitsuhata and Uchida, 2004;
Newman and Alumbaugh, 1995; Streich, 2009; Sugeng, 1998; Weiss
and Constable, 2006; Weiss and Newman, 2002). While these meth-
ods are efficient in terms of accuracy and are simple to work with,
they lack the flexibility required for representing arbitrary, compli-
cated interfaces and for local refinement of the mesh. More flexibility
is offered by the finite–volume (FV) and finite–element (FE) methods
which can use unstructured grids. In unstructured grids, the facets
of the elements conform to the irregular interfaces and, hence, avoid
further refinements at these interfaces. These grids also allow local
refinement of the mesh at observation points or at locations of high
solution curvature (e.g., at the source in total–field approaches).
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The FV method directly discretizes the integral form of the gov-
erning equations while the FE method approximates the solution of
the weak form of a partial differential equation by minimizing an
error function. Compared to the FE techniques, the FV methods are
generally simpler in idea and more physically meaningful (see, e.g.,
Hirsch, 2007; Hermeline, 2009; Hermeline et al., 2008). The more rig-
orous mathematical background of the FE method, on the other hand,
provides better control over the scheme. Moreover, unstructured
FE schemes are usually more convenient for programming because,
unlike FV discretizations, FE discretizations do not deal with com-
plex geometrical structures in the mesh. For these reasons, the FE
technique has been favored in geophysics by researchers who have
worked with unstructured grids (e.g., Badea et al., 2001; Puzyrev et
al., 2013; Schwarzbach et al., 2011; Um et al., 2012a,b).

Different classes of FE and FV methods have been used for solv-
ing EM problems on unstructured grids. Methods which solve for
the electric and/or magnetic fields are called EM–field methods,
and those which solve for the electric and magnetic potentials are
commonly called potential (or A–0) methods. (The main reason for
using the potential method is the better conditioning of the prob-
lems in this method which suits iterative solvers.) FE methods use
nodal–based and/or edge–based (vector) basis functions. Nodal basis
functions were used by, e.g., Badea et al. (2001), Key and Ovall
(2011), Li and Key (2007) and Puzyrev et al. (2013). Nédéléc (1980)
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introduced vector basis functions which were used by, e.g., Börner
et al. (2008), Schwarzbach et al. (2011), Um et al. (2010) and Um et
al. (2013). These basis functions have the advantage of allowing the
discontinuity of the normal component of electric field at conductiv-
ity contrasts, and also of being divergence free (inside source/charge
free elements).

There are also different classes of FV methods for unstructured
grids. In the cell–centred FV methods, all the fields are co–located at
the centres of the control–volumes (e.g., Remaki, 2000; Shankar et al.,
1990). In the staggered methods, the unknowns are located at sepa-
rate locations: Madsen and Ziolkowski (1990) employed a staggered
grid in which the full 3–D vectors of electric and magnetic fields
are defined on the edges of the primary and dual cells, respectively
(Weiss, 2010, and Jahandari and Farquharson, 2014, 2015, belong to
this category). Yee and Chen (1994, 1997) proposed a slightly dif-
ferent approach by locating the electric and magnetic fields at the
vertices of primary and dual cells. In terms of the location of the
unknown fields, cell–centred FV schemes can be seen as counter-
parts of nodal–based FE schemes (e.g., a cell–centred FV scheme
with Voronoï cells as control–volumes corresponds to a nodal–based
FE scheme on a tetrahedral mesh), and staggered FV schemes as
equivalents of edge–based FE schemes.

During recent years, we developed several FV and FE schemes
for the modelling of EM data on tetrahedral grids (Ansari and
Farquharson, 2014; Jahandari and Farquharson, 2014, 2015). The
fact that all these schemes belong to classes of FE and FV tech-
niques where the unknown vector fields are defined at the edges
of the elements motivated the comparison of these schemes. The
EM–field FE scheme uses vector basis functions while the poten-
tial FE scheme uses both vector and scalar basis functions (Ansari,
2014). The EM–field and potential FV schemes all use staggered
tetrahedral–Voronoï grids (Jahandari and Farquharson, 2014, 2015).
In the EM–field FV and FE schemes, the unknown fields are defined
along the edges of the tetrahedra while in the potential FV and
FE schemes, the vector and scalar potentials are defined along the
edges and at the nodes of the tetrahedra, respectively. There is only
one FE potential scheme while there are two potential FV schemes
(gauged and ungauged). Therefore, there are five frequency–domain
total–field schemes (two FE and three FV). In the following
sections, the theoretical background of the methods is briefly

Fig. 1. The unknown vector and scalar potentials involved in approximating relation
(10) for a tetrahedral edge. This edge is shown by a black dashed line and the unknown
potential at this edge is Am . The edges that are used for approximating the first term in
this relation are shown by gray solid lines. All the edges in gray are used by the second
term of this relation for approximating ∇x.

Fig. 2. The nodes and edges involved in discretizing relations (17) and (20) for the
edge m (shown as a dashed line). As an example, the unknowns (Ẽ, Ã and 0̃) for one of
the tetrahedra that share m are shown (the vertices of this tetrahedron are in gray).

described and then three examples are used for comparing the
schemes in terms of accuracy and in terms of computational
resources required by generic direct and iterative solvers for solving
the problems.

2. Theory

In the direct EM–field method the problem is formulated in terms
of electric and magnetic fields (E and H) while in the potential
method, these fields are replaced by their representations in terms
of magnetic vector potential and electric scalar potential (A and 0):

E = −iyA − ∇0 (1)
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Fig. 3. A vertical section through the model in the first example. It shows the loca-
tion of the 100m line source (the thick black segment) and the anomalous region
(dark gray).
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