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A B S T R A C T

In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT
modeling was presented. The finite element software was developed, employing a paving algorithm to
generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE
forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes
using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied
around sites and in the area of interest, with superior results when compared to other FE methods. The
reliability of the developed codes was also confirmed when comparing both analytical solutions and COM-
MEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh
showed useful and powerful features such as handling irregular and complex subregions and providing local
refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less
number of elements in a mesh.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

From the past to the present, two-dimensional magnetotelluric
modeling was successfully solved by various numerical techniques
such as the finite difference (FD) method (Rao and Babu, 2006) and
finite element (FE) method (Reddy and Rankin, 1975; Wannamaker
et al., 1986; Key and Weiss, 2006; Franke et al., 2007; Lee et al.,
2009). The efficiency and accuracy of the FD method were proven for
a simple 2-D model (Rao and Babu, 2006). With the limitation of rect-
angular grids, many complex subregions in the 2-D domain such as
modeling topography, irregular anomalous bodies, and seafloor can-
not be handled by its discretization. Therefore, the solution obtained
by the FD method may be inaccurate and unrelialable.

The finite element (FE) method is another numerical technique
that is often used for 2-D MT forward modeling. Its efficiency and
accuracy have been proven (Reddy and Rankin, 1975; Wannamaker
et al., 1986; Key and Weiss, 2006; Franke et al., 2007; Lee et al., 2009).
Unlike the FD method, the FE method is more flexible on discretiza-
tion. Various mesh schemes such as structured triangular meshes
(Wannamaker et al., 1986), unstructured triangular meshes with

adaptive refinement (Franke et al., 2007; Key and Weiss, 2006) and
structured quadrilateral meshes (Reddy and Rankin, 1975; Lee et al.,
2009) can be used in the FE method. The structured triangular and
quadrilateral mesh algorithms are simple and can handle domains
with complex subregions, but the local refinement mesh feature
cannot be implemented efficiently. In contrast, the unstructured tri-
angular mesh algorithm can overcome this problem. However, it
needs to incorporate an adaptive scheme to improve its accuracy
and it requires a large number of triangular elements in complex
subregions (Key and Weiss, 2006; Franke et al., 2007).

Presently, implementations of unstructured quadrilateral meshes
already in the FE method are popular as discussed by Blacker
and Stephenson (1991); Bern (1997); Owen (1998); Sarrate and
Huerta (2000); Remacle et al. (2012). The advantages of unstruc-
tured quadrilateral mesh algorithms over triangular mesh algo-
rithms such as accuracy, and computational resources have been
extensively surveyed and discussed (Owen, 1998). So, it is both inter-
esting and challenging to study and apply this type of algorithm
to develop alternative FE methods to solve a 2-D magnetotelluric
problem.
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In this work, we applied the FE method with an alternative
unstructured quadrilateral mesh to solve a 2-D magnetotelluric
problem. An unstructured quadrilateral mesh was used for our FE
codes and was generated using the paving algorithm (Blacker and
Stephenson, 1991). Here, the paving algorithm is reviewed and sum-
marised. Suitable FE codes with the selected mesh type were devel-
oped and tested. The resulting numerical solution was validated and
compared to both an analytical solution and other numerical meth-
ods. Furthermore, the capabilities of the alternative mesh algorithm
to handle the 2-D domain are presented and discussed.

2. Governing equations

Magnetotelluric (MT) modeling describes the phenomena of the
natural electromagnetic (EM) induction in the Earth. The naturally
occurring EM fields act like a plane-wave with harmonic diffu-
sion, the displacement currents can be neglected and the time-
dependence is assumed to be e−iyt, where y is the angular frequency.
For the case where the electrical conductivity s is varied in only the x
and z-directions, i.e., s = s(x, z), the second-order partial equations
for the 2-D MT problem with the bounded region Y⊂R

2 is given by
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The notations a,b and u denote different representations depending
on the two MT polarizations:

E-polarization: u = Ey, a = 1, b = iyls , (2)

H-polarization: u = Hy, a = 1/s , b = iyl, (3)

where Ey and Hy are the strike aligned electric and magnetic fields,
respectively, l is the magnetic permeability in free space and l =
l0 = 4p × 10−7 (V s/Am). The bounded region Y is defined by
Y = Y1 ∪ Y2 ∪ C ∪ Cint, where Y1 is the air subregion, Y2 is the
earth subregion, C is the outer boundary and Cint is the air-earth inter-
face where electrical conductivity s is discontinuous. The partial
differential Eq. (1) is subjected to the Dirichlet boundary conditions

u = u0(x, z) on C, (4)

where u0(x, z) is obtained by solving the one-dimensional MT
problem.

3. Mesh algorithm

To solve Eq. (1) for the 2-D magnetotelluric forward modeling
subjected to the boundary condition as in Eq. (4) using the finite
element method, discretization or mesh generation is the first and
important step. For the unstructured quadrilateral mesh, a continu-
ous 2-D domain, Y, was meshed into many subdomains or elements.
Here, Y = ∪M

e=1Y
e, where Ye is the e-th element with a quadrilat-

eral shape and M is the total number of elements. Presently, there are
two categories of generating unstructured quadrilateral mesh: direct
and indirect approaches (Owen, 1998). The direct approach gener-
ates the mesh from the given domain whereas the indirect approach
generates a quadrilateral mesh from an existing triangular mesh
by splitting or merging elements. The algorithms of some indirect
approaches provide elements of poor quality and do not guarantee
complete transformation of triangular elements to quadrilateral ele-
ments (Owen, 1998). In contrast, direct approaches guarantee that
the generated meshes are composed entirely of quadrilateral ele-
ments. However, some of them may produce low-quality elements

near complex boundaries of the domain and are unable to completely
satisfy some constraints (Remacle et al., 2012). For these reasons, a
direct approach was used for generating an unstructured quadrilat-
eral mesh for the 2-D MT model employing the paving algorithm of
Blacker and Stephenson (1991).

An example of the paving algorithm for 2-D magnetotelluric
model is illustrated in Fig. 1.

At the beginning, the nodes are paved on the boundary of the
domain (Fig. 1b). The distance between two nodes does not need
to be uniform. Usually, the connectivities of nodes on the exterior
C and interior Cint boundaries are set as permanent, i.e., the coordi-
nate and number of node on these boundaries do not change. With
permanent boundaries, an exterior paving boundary is paved coun-
terclockwise and progresses inward from the exterior boundary. In
contrast, the interior paving boundary is paved clockwise and pro-
gresses outward from the interior permanent boundary. This step is
called row choice (Fig. 1c). Next, new rows are added and adjusted
to correct the element size and improve the mesh quality by using

Fig. 1. Example of paving algorithm for 2-D model.
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