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A B S T R A C T

Gradient mapping is a technique employed in the interpretation of tomographic velocity images for delineating
geological structures. In this paper, a tomographic method is proposed for determining relative velocity gradient
field from seismic polarization directions. This inverse problem is iteratively resolved by the damped least
squares method. With Hamiltonian formulation of ray theory and under the assumption that the medium is
weakly inhomogeneous, the problem formulation for polarization direction is approximately expressed as a
function of relative velocity gradient. Explicit expressions of the Frechet derivatives of polarization directions
with respect to model parameters are given. The proposed tomographic method is illustrated by conducting
synthetic experiments for showing the ability of our method to recover relative velocity gradient field as well as
its potential applicability to complex media. The test results demonstrate that the proposed method is a pro-
mising approach for imaging geological structures.

1. Introduction

Gradient mapping is commonly used for analyzing potential field
data (Boschetti, 2005; Hsu et al., 1996; Métivier et al., 2016; Oruç et al.,
2013; Sharpton et al., 1987; Zuo and Hu, 2015), which presents the
data in a form that helps us to focus on the main features of potential
field data and to interpret them in terms of geological structures.
Stewart Fishwick introduced it as a tool employed in the interpretation
of seismic velocity images obtained from traveltime tomographic in-
version for delineating geological structures (Fishwick, 2006). Regions
of strong gradient indicate rapid changes in velocity field, which gen-
erally imply the existence of geological boundaries such as contacts or
faults. Gradient maps give information on the sharpness and continuity
of geological boundaries, which is not easily obtained from tomo-
graphic velocity images (Fishwick, 2006; Schmandt, 2012; Wang et al.,
2008).

To date seismic velocity gradient maps have no choice but to be
translated from traveltime inversion results by a finite difference ap-
proximation (Fishwick, 2006; Ramachandran, 2012), so the reliability
of gradient maps depends on that of traveltime inversion results. Tra-
veltime is stationary with respect to perturbation in the ray path. It
makes traveltime data insensitive to the exact position of velocity
heterogeneities (Hu and Menke, 1992; Song et al., 2001). Sometimes

the rays employed in inversion may deviate from the real paths, which
results in a biased data kernel and thus misdistributes the velocity
anomalies in the imaged velocity structure (Hu and Menke, 1992). In
such a case, the gradient maps obtained from the resulting velocity
model will appear some deviation.

Polarization (the slowness vector of a ray in our case) is a basic
property of seismic waves, which is another source of data for seismic
tomography and can be obtained easily from multicomponent seismic
data (Falsaperla et al., 2002; Jurkevics, 1988; Perelberg and
Hornbostel, 1994). Polarization data (the measurements of slowness
vectors) have been utilized to be inverted for velocity models in-
dependently or simultaneously with other kinds of data, such as tra-
veltimes (Bégat and Farra, 1997; Hu and Menke, 1992; Hu et al., 1993;
Hu et al., 1994).

Polarization is fundamentally distinct from traveltime, which is
sensitive to the velocity gradient along the ray path, and can probe
velocity gradient (Hu and Menke, 1992; Song et al., 2001). However,
there are no articles that have explicitly addressed velocity gradient
inversion with polarization data. In this paper, we develop a tomo-
graphic method for recovering relative velocity gradient field directly
from polarization direction data. This method is demonstrated through
two validation tests for 1-D and 2-D models.
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2. Method

2.1. Relation between polarization direction and relative velocity gradient

Seismic tomography is a data inference technique for reconstructing
the model of the Earth’s interior, which can be seen as a way to find the
model that best explains observed data with a supposed physical re-
lationship between seismic data and seismic model. The relationship is
used for solving the forward problem in tomographic inversion. In this
section, we derive an approximate relationship between polarization
direction and relative velocity gradient from ray theory in weakly in-
homogeneous media.

Let's introduce the Hamiltonian function (Farra and Madariaga,
1987; Lambaré et al., 1996)
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where t denotes the time abscissa along the ray trajectory, r the posi-
tion, and p the slowness vector such that = ∇tp r( ) for ray trajectories.
A ray is defined by its canonical vector =t t ty r p( ) ( ( ), ( )). This canonical
vector of the rays satisfies Hamilton’s equations (Billette and Lambaré,
1998)
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with the initial condition =H tx p( , , ) 0, where ∇p and ∇r denote the
gradients with respect to the vectors r and p, respectively. For a given
model and a source-receiver pair rb and re, ray tracing gives us the ray
integrals
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The integrals are taken along the ray L connecting the source po-
sition rb, and the receiver position re with the start-time and the end-
time of arc =t 0 and =t T . pb and pe are the P-wave slowness vectors at
source and receiver, respectively. re and pe depend on the ray L and the
velocity field through the ray. In this paper, we take pe as the P-wave
polarization vector and simply call it polarization as Hu and Menke did
(Hu and Menke, 1992).

In 2-D media, the P-wave polarization direction is determined by
the two components of polarization vector in horizontal and vertical
directions. We decompose the polarization vector pe into the two
components

∫
∫

= − ∇

= − ∇

p p v v t

p p v v t

p r r

p r r

( ) ( )d

( ) ( )d
,e

x
b
x

L
x

e
z

b
z

L
z

2

2
(4)

where the superscript x and z indicate that the corresponding compo-
nents of the vectors is in x and z directions, respectively. We take the
incidence of seismic ray at receiver as P-wave polarization direction,
which is measured from the vertical direction. With Eq. (4) and by
introducing the arc length of the ray s as the integral variable, we ob-
tain the relationship between polarization direction and velocity model
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where =s v trd ( )d , is the differential of the arc length of the ray, α and
β are the angles between slowness vector of the ray and vertical di-
rection at source and receiver, respectively. β is also taken as the po-
larization direction at receiver.

We expand the integrand in the numerator on the right side of Eq.
(5) around rb as a taylor series
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In media with low contrast velocity, the difference between v r( )b
and v r( ) are small, so the third term in Eq. (6) can be ignored, and then
Eq. (6) is now approximated as
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In the same way, we obtain
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Substituting the approximate expressions (7) and (8) into Eq. (5),
we get
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The integrands in Eq. (9) are the components of the vector ∇ ,v
v

r
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we call relative velocity gradient. This equation is concerning the re-
lationship between relative velocity gradient ∇v

v
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and polarization di-

rection β.

2.2. Model parameterization

Model parameterization is a main procedure in seismic tomographic
inversion. We digitize the medium into a regular set of triangular cells
(Song et al., 2001) and the relative velocity gradient values are speci-
fied at the grid points of the cells. Inside each triangular cell, we think
the relative velocity gradient distribution varies linearly with the spa-
tial coordinates x and z. Therefore, the relative velocity gradient field is
continuous within the whole medium. With such digitization, the re-
lative velocity gradient field in the medium can be conveniently re-
presented as
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where jm( ) is the relative velocity gradient value at the jth grid point
and f r( )i are N dimensionless basis functions. The basis functions we
use are defined as follows. Denoting the position vectors of the three
vertices of a triangular cell as Ik, Ip, Iq, then the basis function for the
vertex k is obtained as (Song et al., 2001)
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where l is the position vector contained within the triangle and
= − × −D I I I I|( ) ( )|q k q p is the area of a parallelogram whose two sides

are −I I( )q k and −I I( )q p . The basis functions corresponding to vertices p
and q are obtained by permuting the indices in clockwise order of k, p,
and q. These basis functions depend linearly on the position r.

2.3. Solving the inverse problem

We take the least-squares criterion as a misfit function over the
model space and try to find a model which minimizes the misfit func-
tion

= −β βC m m( ) ‖ ( )‖ ,o 2
2 (12)

where m is the vector of model parameters. β and βo are the vectors of
theoretical and observed data, respectively. For our method, the model
is described by relative velocity gradient, the observed data are
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