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a b s t r a c t

A new formulation of constitutive equations for states of high compression is introduced for isotropic
media, exploiting a separation between hydrostatic and deviatoric components in strain energy. The
strain energy is represented as functions of strain invariants, with one purely volumetric component
and the other which vanishes for purely hydrostatic deformation. This approach preserves the form of
familiar equations of state through the volumetric component, but allows the addition of volume and
pressure dependence of the shear modulus from the deviatoric term. A suitable shear modulus represen-
tation to accompany a Keane equation of state is demonstrated.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The pressures and temperatures in the Earth’s lower mantle are
already high enough that properties of materials differ substan-
tially from the ambient state. Experimental and ab initio computa-
tional methods have steadily improved, so that there is now
substantial information available on the behaviour of the bulk
modulus (K) at large compression. Recently the shear modulus
(G) has also been probed for many materials of importance in the
deep Earth.

The dominant representation of material behaviour for high-
pressure studies is the use of the Birch-Murnaghan formulation
coupled with a Mie-Grüneisen-Debye treatment of thermal effects.
A systematic anisotropic formulation was provided by Stixrude
and Lithgow-Bertollini (2005) from which bulk and shear moduli
can be readily extracted.

However, many experimental studies at high compression have
favoured rather different representations of bulk modulus beha-
viour. Thus Sakai et al. (2016) in a study of the post-perovskite
phase have preferred the Keane equation of state (EOS), having
tested a range of parameterisations. Yet, except for Birch-
Murnaghan, there is no corresponding development for the shear
modulus.

In this study we demonstrate that it is possible to develop an
isotropic formulation of the constitutive equation between stress
and strain that allows the retention of familiar equations of state
for the bulk modulus, whilst including shear effects via a deviatoric

component. This representation enlarges the repertoire of available
ways of describing material behaviour under high pressure and
temperature.

2. Constitutive equations

A constitutive equation provides a specification of the relation
between the stress tensor r and a representation of strain E. We
will initially consider states solely under compression, and briefly
introduce thermal effects in Section 3. We will follow the contin-
uum mechanics approach and notation of Kennett and Bunge
(2008), making a development in terms of strain energy W.

We consider a deformation from a reference state (unstressed)
described by coordinates n to a current state described by coordi-
nates x. The relation between the states is provided by the defor-
mation gradient tensor F ¼ @x=@n, and J ¼ detF ¼ V=V0 is then
the ratio of a volume element in the current state (V) to that in
the reference state (V0). We also introduce the displacement gradi-
ent tensor A ¼ F� I, which provides a measure of the distortion
introduced by the deformation.

In terms of F and the Green strain E ¼ 1
2 ðFTF� IÞ, the compo-

nents of the stress tensor r are given by

Jrij ¼ Fik
@W
@Fjk

¼ FikFjl
@W
@Ekl

; ð1Þ

where we use the Einstein summation convention of summation
over repeated suffices.

The nature of the strain energy W thus determines the relation-
ship between stress and strain. For an elastic material, W can be
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equated to the specific Helmholtz free energy F=q, where q is den-
sity. In terms of specific quantities the thermodynamic relations
are

qdW ¼ �qSdT þ q0rijdAij; ð2Þ
in terms of the displacement gradient A, specific entropy S and
temperature T. The stress tensor rij can be derived from F as

rij ¼ q
q0

@F
@Aij

ð3Þ

since the volume ratio J can also be written as J ¼ q0=q.
The most complete current formulation of such a constitutive

equation is that by Stixrude and Lithgow-Bertelloni (2005), based
on the earlier work of Birch and Murnaghan. This employs a Taylor
series expansion of the Helmholtz free energy about the reference

state in terms of the Eulerian strain tensor e ¼ 1
2 ðI� ½FFT ��1Þ. The

volume transformation

q
q0

� �2

¼ J�2 ¼ det½2e� I�: ð4Þ

The Helmholtz Free energy is then written as a power series in the
Eulerian strain

F ¼ V0

X
i

Bie
i; ð5Þ

this Birch-Murnaghan formulation is commonly taken to 3 or 4
terms.

By examining local perturbations from a stressed state the elas-
tic moduli K;G can be extracted. The choice of Eulerian strain
markedly reduces the influence of the third-order term in strain
in (5). The third-order representation does not involve any second
derivatives of moduli. When coupled with a representation of ther-
mal pressures with a Debye-Mie-Grüneisen form this provides a
complete system for characterising states with moderate pressure
(as in Section 3).

The disadvantage of this approach is that it essentially extrapo-
lates from low pressure to higher pressures, depending strongly on
the gradients of the moduli (K 0

0;G
0
0) in the reference state. The sit-

uation is improved if high-pressure information is available for a
material, but even then differences can arise from the way in which
the inversion for the set of mechanical and thermal parameters is
conducted. Kennett and Jackson (2009) have demonstrated that a
full nonlinear inversion can be effective, and provide both uncer-
tainty estimates and information about cross-coupling between
parameters.

2.1. Equations of state

In many situations a reduced form of the constitutive equation
is employed relating volume V, pressure p and temperature T. Such
equations of state (EOS) can only describe the behaviour of the bulk
modulus (K). A number of different formulations have been used to
fit experimental data on material properties at high pressure, and
can be written in terms of the density ratio x ¼ q=q0 ¼ V0=V ¼ J�1.

The ‘cold’ part of equations of state provides a specification of
the pressure p as a function of volume pðVÞ or, equivalently, den-
sity ratio pðxÞ. The bulk modulus K can be extracted from the
expressions for the pressure in the EOS from
K ¼ �Vð@p=@VÞT ¼ xð@p=@xÞ. A further differentiation extracts the
pressure derivative K 0 ¼ ð@K=@pÞT ¼ xð@K=@pÞ=K.

The Vinet-Rydberg-Morse EOS (Vinet et al., 1987) is based on an
atomic force model, with pressure represented as

p ¼ 3K0x2=3½1� x�1=3� expf3
2
ðK 0

0 � 1Þ½1� x�1=3�g; ð6Þ

where K0 is the bulk-modulus at ambient conditions, and
K 0

0 ¼ ½@K=@p�0 is its pressure derivative. The bulk modulus as a func-
tion of the density ratio x is then

K ¼ K0x2=3 2þ ðf� 1Þx�1=3 � fx�2=3� �
expff½1� x�1=3�g; ð7Þ

where f ¼ 3
2 ðK 0

0 � 1Þ.
Poirier and Tarantola (1998) used a similar development to the

Birch-Murnaghan approach, but employed logarithmic strain,
which gives a more rapid convergence. To second order, the pres-
sure is

p ¼ K0x ln xþ 1
2
ðK 0

0 � 2Þðln xÞ2
� �

: ð8Þ

Although originally derived using logarithmic strain, the Poirier-
Tarantola EOS (8) can be recognised as simply a function of the
strain invariant x ¼ 1=J. The associated representation of the bulk
modulus is

K ¼ K0x 1þ ðK 0
0 � 1Þ ln xþ 1

2
ðK 0

0 � 2Þðln xÞ2
� �

: ð9Þ

Stacey and Davis (2004) advocate the use of the Keane (1954) EOS
for deep Earth studies because it links to properties at (nominal)
infinite pressure:

p ¼ K0
K 0

0

K 02
1
½xK 0

1 � 1� � K 0
0

K 0
1
� 1

� �
ln x

" #
: ð10Þ

Thermodynamic arguments suggest a lower bound on K 0
1 of 5/3.

The Keane EOS can be regarded as an interpolant rather than just
an extrapolant, though the high pressure limit enters as a parameter
in fitting. The Keane representation of the bulk modulus has a
rather simple form,

K ¼ K0 1þ K 0
0

K 0
1

xK
0
1 � 1

� 	� �
: ð11Þ

Each EOS should be regarded as a parametric representation of
behaviour, and thus when different expressions are used to fit the
same experimental data the values obtained for K0;K

0
0 will be sim-

ilar but not identical (see, e.g., Sakai et al., 2016).
None of these equations of state have any associated shear

moduli. Further, unlike the Birch-Murnaghan expansion, none
has any obvious extensions to tensor form that would allow
extraction of shear properties.

2.2. Isotropic constitutive equations

If we concentrate attention on just the bulk modulus (K) and
shear modulus (G) we can describe behaviour in terms of isotropic
constitutive equations. The important materials in the deep Earth,
e.g. bridgmanite and ferro-periclase, are intrinsically anisotropic at
the crystal level. Nevertheless, the properties of aggregates can be
adequately described in isotropic terms, as is commonly used.

For an isotropic medium, the strain energy W can be repre-
sented as a function of invariants of the strain measures
(Spencer, 1980). An extensive development has been made for
large deformation in rubber-like materials in tension, whereas
we need results for strong compression.

The deformation gradient F can be written in terms of a stretch-
ing component and a rotation in two ways

F ¼ RU ¼ VR ð12Þ
where U2 ¼ FTF and V2 ¼ FFT . U;V have the same eigenvalues, the
principal stretches k1; k2; k3, but the principal axes vary in orienta-
tion by the rotation R. The useful invariants of U;V are

J2 ¼ k21k
2
2k

2
3 ¼ detU2; ð13Þ
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